Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Bicyclic oriented graphs with skew-rank 6^{*}

Yong Lu, Ligong Wang*, Qiannan Zhou

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

A R T I C L E I N F O

MSC.

05C20

05C50

05C75

Keywords:

Oriented graph Skew-rank

ABSTRACT

Let G^{σ} be an oriented graph and $S(G^{\sigma})$ be its skew-adjacency matrix. The skew-rank of G^{σ} , denoted by $sr(G^{\sigma})$, is the rank of $S(G^{\sigma})$. In this paper, we characterize all the bicyclic oriented graphs with skew-rank 6. Let G^{σ} be a bicyclic oriented graph with pendant vertices but no pendant twins. If $sr(G^{\sigma}) = 6$, then $6 \le |V(G^{\sigma})| \le 10$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Skew-adjacency matrix Bicyclic oriented graph

Let *G* be a simple graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$. The *adjacency matrix* of *G* is the $n \times n$ symmetric 0–1 matrix $A(G) = (a_{ij})$, where $a_{ij} = 1$ if the vertices v_i and v_j are adjacent, and $a_{ij} = 0$, otherwise. The *spectrum* of *G* is defined as the spectrum of A(G). We call p(G), n(G), $\eta(G)$ the numbers of positive, negative and zero eigenvalues in the spectrum of A(G) including multiplicities, respectively. Obviously $p(G) + n(G) + \eta(G) = n$. The *rank* r(G) of *G* is denoted as the rank of its adjacency matrix. An *oriented graph* G^{σ} is a digraph which assigns each edge of *G* a direction σ , and *G* is called the *underlying graph* of G^{σ} . Denoted by (u, v) the *arc* of G^{σ} , with tail *u* and head *v*. The *skew-adjacency matrix* associated to the oriented graph G^{σ} is the $n \times n$ matrix $S(G^{\sigma}) = (s_{ij})$, where $s_{ij} = 1$ and $s_{ji} = -1$ if (v_i, v_j) is an arc of G^{σ} , otherwise $s_{ij} = s_{ji} = 0$. The *skew-rank* $sr(G^{\sigma})$ of an oriented graph G^{σ} is defined as the rank of the skew-adjacency matrix $S(G^{\sigma})$. Since $S(G^{\sigma})$ is skew-symmetric, every eigenvalue of $S(G^{\sigma})$ is a pure imaginary number or 0, and the skew-rank of an oriented graph is even.

An *induced subgraph* of G^{σ} is an induced subgraph of G and each edge preserves the original orientation in G^{σ} . For a vertex $v \in V(G^{\sigma})$, we write $G^{\sigma} - v$ for the oriented graph obtained from G^{σ} by removing the vertex v and all edges incident with v. For an induced subgraph H^{σ} of G^{σ} , let $G^{\sigma} - H^{\sigma}$ be the subgraph obtained from G^{σ} by deleting all vertices of H^{σ} and all incident edges. The *degree* of a vertex v for an oriented graph G^{σ} is the number of the vertices incident to v in its undirected graph G. A vertex of an oriented graph G^{σ} is called *pendant* vertex if its degree is 1 in G^{σ} , and is called *quasi-pendant* vertex if it is adjacent to a pendant vertex. Denoted by K_n , P_n , C_n , $K_{1,n-1}$ a complete graph, a path, a cycle and a star all of order n, respectively. A graph is called *trivial* if it has one vertex and no edges, it is sometimes denoted by K_1 or P_1 .

Let $C_n^{\sigma} = v_1 v_2, \dots, v_n v_1$ be an even oriented cycle. The sign $\operatorname{sgn}(C_n^{\sigma})$ of C_n^{σ} is defined as the sign of $\prod_{i=1}^n s_{v_i v_{i+1}}$ with $v_{n+1} = v_1$. An even oriented cycle C_n^{σ} is called *evenly-oriented* (oddly-oriented) if its sign is positive (negative). G^{σ} is called *evenly-oriented* if every even cycle in G^{σ} is evenly-oriented.

A *bicyclic* graph is a simple connected graph in which the number of edges equals the number of vertices plus one. Let *G* be a bicyclic graph, the *base* of *G* is the unique bicyclic subgraph of *G* containing no pendant vertices. Let $C_p(p \ge 3)$ and $C_q(q \ge 3)$ be

* Corresponding author: Tel.: +86 02988431660.

http://dx.doi.org/10.1016/j.amc.2015.08.105 0096-3003/© 2015 Elsevier Inc. All rights reserved.

ELSEVIER

^{*} This work was supported by the National Natural Science Foundation of China (No.11171273).

E-mail addresses: luyong.gougou@163.com (Y. Lu), lgwangmath@163.com, lgwang@nwpu.edu.cn (L. Wang), crabzhou1234@163.com (Q. Zhou).

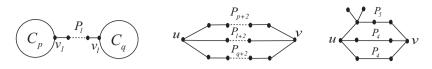


Fig. 1. Graphs $\infty(p, l, q), \theta(p, l, q)$ and G^* .

two vertex-disjoint cycles of length p, q and $P_l = v_1 v_2 \cdots v_l (l \ge 1)$ be a path of length l - 1. Assume that $v \in V(C_p)$ and $u \in V(C_q)$, let $\infty(p, l, q)$ be the graph obtained from C_p , C_q , P_l by identifying v with v_1 and u with v_l , respectively (as shown in Fig. 1). The bicyclic graph containing $\infty(p, l, q)$ as its base is called an ∞ -graph.

Let P_{p+2} , P_{l+2} , P_{q+2} be three paths with min{p, l, q} ≥ 0 and at most one of p, l, q is 0. Let $\theta(p, l, q)$ be the graph obtained from $P_{p+2}, P_{l+2}, P_{q+2}$ by identifying the three initial vertices and terminal vertices (as shown in Fig. 1). The bicyclic graph containing $\theta(p, l, q)$ as its base is called a θ -graph.

Recently the skew-adjacency matrix of an oriented graph has received a lot of attentions. Gutman introduced the energy of a simple undirected graph in [10]. Several results on the energy of the adjacency matrix of a graph have been obtained in [7,9,11,12,17,21] and the book [16]. Recently more concepts of graph energy are investigated, such as Randić energy [3,8], incidence energy [2,4], Laplacian energy [6], matching energy [14], distance energy [25] for an undirected graph, and skew energy for an oriented graph [1,15] etc. Cavers et al. [5] studied the skew-adjacency matrices of oriented graphs. IMA-ISU research group on minimum rank [13] defined the minimum skew-rank of a simple graph G to be the smallest possible rank among all skewsymmetric matrices over a field F whose ijth entry (for $i \neq j$) is nonzero whenever $\{i, j\}$ is an edge in G and is zero otherwise, and they obtained some results about the minimum skew-rank of graphs. Qu, Yu and Feng [24] obtained more results about the minimum skew-rank of graphs. They also characterized the unicyclic graphs with skew-rank 4 or 6, respectively. Mallik and Shader [22] established some necessary conditions for a graph to have the minimum skew-rank 4 and gave several families of graphs with skew-rank 4. Li and Yu [18] studied the skew-rank of oriented graphs and characterized oriented unicyclic graphs attaining the minimum value of the skew-rank among oriented unicycle graphs of order n with girth k. Qu and Yu [23] characterized the bicyclic oriented graphs with skew-rank 2 or 4.

The rest of this paper is organized as follows: in Section 2, some necessary lemmas are introduced and we point out a small mistake of Theorem 2 of Ou and Yu [23] and give the right conclusion. In Section 3, we characterize all the bicyclic oriented graphs with skew-rank 6, and give a conjecture about the connection between the skew-rank and the number of vertices of a bicyclic oriented graph with pendant vertices but no pendant twins. In Section 4, we give a table to conclusion the results in Theorems 3.1, 3.2 and 3.3.

2. Preliminaries

In this section, we list some elementary lemmas and known results.

Lemma 2.1 ([23]).

- (a) Let H^{σ} be an induced subgraph of G^{σ} . Then $sr(H^{\sigma}) < sr(G^{\sigma})$.
- (b) Let $G^{\sigma} = G_1^{\sigma} \cup G_2^{\sigma} \cup \cdots \cup G_t^{\sigma}$, where $G_1^{\sigma}, G_2^{\sigma}, \ldots, G_t^{\sigma}$ are connected components of G^{σ} . Then $sr(G^{\sigma}) = \sum_{i=1}^t sr(G_i^{\sigma})$. (c) Let G^{σ} be an oriented graph on n vertices. Then $sr(G^{\sigma}) = 0$ if and only if G^{σ} is an empty graph.

Lemma 2.2 ([23]). Let C_n^{σ} be an oriented cycle of order n. Then we have

$$sr(C_n^{\sigma}) = \begin{cases} n, & C_n^{\sigma} \text{ is oddly-oriented,} \\ n-2, & C_n^{\sigma} \text{ is evenly-oriented,} \\ n-1, & \text{otherwise.} \end{cases}$$

Lemma 2.3 ([23]). Let P_n^{σ} be an oriented path of order n. Then we have

$$sr(P_n^{\sigma}) = \begin{cases} n-1, & n \text{ is odd,} \\ n, & n \text{ is even.} \end{cases}$$

Lemma 2.4 ([18]). Let G^{σ} be an oriented graph containing a pendant vertex, and H^{σ} be the induced subgraph of G^{σ} obtained by deleting this pendant vertex together with its neighbor. Then $sr(G^{\sigma}) = sr(H^{\sigma}) + 2$.

Two pendant vertices are called *pendant twins* in G^{σ} if they have the same neighbor in G^{σ} .

Lemma 2.5 ([18]). Let u, v be pendant twins of an oriented graph G^{σ} . Then we have $sr(G^{\sigma}) = sr(G^{\sigma} - u) = sr(G^{\sigma} - v)$.

Lemma 2.6 ([19]). Let C_n^{σ} be an oriented cycle of order $n(n \ge 3)$ and H^{σ} be an oriented graph of order $m(m \ge 1)$. Assume that G^{σ} is the graph obtained by identifying a vertex of C_n^{σ} with a vertex of H^{σ} (i.e., $V(C_n^{\sigma}) \cap V(H^{\sigma}) = v$). Let $B^{\sigma} = H^{\sigma} - v$ be the induced subgraph Download English Version:

https://daneshyari.com/en/article/4626297

Download Persian Version:

https://daneshyari.com/article/4626297

Daneshyari.com