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a b s t r a c t

The nonlinear delay differential equation ẋ(t) = r(t)[g(t, xt) − h(x(t))], t ≥ 0 is considered.

Sufficient conditions are established for the uniform permanence of the positive solutions of

the equation. In several particular cases, explicit formulas are given for the upper and lower

limit of the solutions. In some special cases, we give conditions which imply that all solutions

have the same asymptotic behavior, in particular, when they converge to a periodic or constant

steady-state.
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1. Introduction

The scalar nonautonomous differential equation

Ṅ(t) = a(t)N(t) − r(t)N2(t), t ≥ 0 (1.1)

is known as the logistic equation in mathematical ecology. Eq. (1.1) is a prototype in modeling the dynamics of single species

population systems whose biomass or density is denoted by a function N of the time variable. The functions a(t) and r(t) are time

dependent net birth and self-inhibition rate functions, respectively. The carrying capacity of the habitat is the time dependent

function

K(t) = a(t)

r(t)
, t ≥ 0. (1.2)

By using this notation, Eq. (1.1) can be written as

Ṅ(t) = r(t)(K(t)N(t) − N2(t)), t ≥ 0, (1.3)

or

Ṅ(t) = r(t)(K0N(t) − N2(t)), t ≥ 0 (1.4)

whenever the carrying capacity is constant, i.e., K(t) = K0, t ≥ 0 with a K0 > 0.

It follows by elementary techniques that the above equations with the initial condition

N(0) = N0 > 0 (1.5)

has a unique solution N(N0)(t) of the initial value problem (IVP) (1.4) and (1.5) given by the explicit formula

N(N0)(t) = N0K0eK0

∫ t
0 r(s) ds

K0 + N0(eK0

∫ t
0 r(s) ds − 1)

, t ≥ 0. (1.6)
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From the above formula, we get that either∫ ∞

0

r(s) ds = ∞ (1.7)

and

N(N0)(∞) := lim
t→∞

N(t) = K0 for any N0 > 0,

or ∫ ∞

0

r(s) ds < ∞ (1.8)

and

N(N0)(∞) = N0K0eK0

∫ ∞
0 r(s) ds

K0 + N0(eK0

∫ ∞
0 r(s) ds − 1)

�= K0 for any N0 �= K0.

Thus K0 is a global attractor of (1.4) with respect to the positive solutions if and only (1.7) holds.

It follows by some elementary technique that for any N0 > 0 the solution N(N0)(t) of the IVP (1.3) and (1.5) obeys

K(∞) ≤ lim inf
t→∞

N(N0)(t) ≤ lim sup
t→∞

N(N0)(t) ≤ K(∞) (1.9)

for any N0 > 0, if

0 < K(∞) := lim inf
t→∞

K(t) ≤ lim sup
t→∞

K(t) =: K(∞) < ∞ (1.10)

and (1.7) holds. Motivated by the above simple results, in this paper we give lower and upper estimations for the positive solu-

tions of the nonlinear delay differential equation

ẋ(t) = r(t)(g(t, xt) − h(x(t))), t ≥ 0, (1.11)

where xt(θ) = x(t + θ), −τ ≤ θ ≤ 0, r, h ∈ C(R+, R+), g ∈ C(R+ × C, R+). Here τ > 0 is fixed, R+ := [0,∞) and C := C([−τ, 0], R).

Eq. (1.11) can be considered as a population model equation with delay in the birth term r(t)g(t, xt), and no delay in the self-

inhibition term r(t)h(x(t)). The form of the delay is based on the works of the authors [3,5,8,10–12,14–17], who have argued that

the delay should enter in the birth term rather than in death of inhibition term. Eq. (1.11) includes, e.g., the next equations

ẋ(t) =
n∑

k=1

αk(t)x(t − τk(t)) − β(t)x2(t), t ≥ 0, (1.12)

ẋ(t) =
n∑

k=1

αk(t)xp(t − τk(t)) − β(t)xq(t), t ≥ 0, 0 < p < q, q ≥ 1, (1.13)

ẋ(t) = α(t) f (x(t − τ)) − β(t)g(x(t)), t ≥ 0, (1.14)

and

ẋ(t) = α(t)x(t − τ)

1 + γ (t)x(t − τ)
− β(t)x2(t), t ≥ 0 (1.15)

with discrete delays, or

ẋ(t) = α(t)

∫ 0

−τ
f (s, x(t + s)) ds − β(t)g(x(t)), t ≥ 0 (1.16)

with distributed delay.

Recently, lower and upper estimations of the positive solutions of Eq. (1.12) were proved in [2] and [6] under the assumptions

that the coefficients αk and β satisfy

α0 ≤ αk(t) ≤ A0, β0 ≤ β(t) ≤ B0, t ≥ 0, k = 1, . . . , n (1.17)

with some positive constants α0, A0, β0 and B0. The following theorem, which is a consequence of our main results, illustrate

that the above boundedness conditions can be released. In this statement we investigate the qualitative behavior of the solution

of Eq. (1.12) under the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0, (1.18)

where ϕ ∈ C+ := {ψ ∈ C([−τ, 0], R+) : ψ(0) > 0}. The unique solution of Eqs. (1.12) and (1.18) is denoted by x(ϕ)(t). We will

assume

αk, τk ∈ C(R+, R+), (k = 1, . . . , n), τ := max
1≤k≤n

sup
t≥0

τk(t) < ∞, (1.19)
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