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1. Introduction

There is a vast literature on the solution of nonlinear equations, see for example Ostrowski [ 1], Traub [2], Neta [3] and Petkovic
et al. [4]. Here we are interested in algorithms for finding a multiple root of a nonlinear equation f(x) =0. A root « of f(x) is of
multiplicity m > 1if f(e) =0, fO(a) =0fori=1,2,...,m—1and f(™(«) = 0. The first method is due to Schréder [5] and it is
also referred to as modified Newton,
m L )
f/ (xn)
The method is based on Newton’s method for the function G(x) = 1/ f(x) which obviously has a simple root at ¢, the multiple
root with multiplicity m of f{x).

Another method based on the same G is Laguerre’s method
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where A (# 0,m) is a real parameter. When f(x) is a polynomial of degree n, this method with A = n is the ordinary Laguerre
method for multiple roots, see Bodewig [6]. This method converges cubically. One special case is Euler-Cauchy for A = 2m
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Other special cases include Halley’s method [7], Ostrowski’s method, and Hansen-Patrick’s family [8]. Two other cubically con-
vergent methods are: Euler-Chebyshev [2]| and Osada’s method [9]. Another variation on Chebyshev’s method is given by Neta
[10]. Sbibih et al. [11] has recently developed a new family of third order methods for multiple roots. The family depends on a
weight function given by
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where the weight function ¢ is a complex function, and . is a non-zero real or complex number. They have shown that the
family is of order three, for m > 2, and of order four for simple roots, if the function ¢ satisfies the following conditions:
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They have also demonstrated that the following methods are special cases:

- Dong (two methods) [12]
+ Victory and Neta [13]

» Neta [10]

» Chun and Neta [14]

« Homeier [15]

» Geum and Kim [16]

» Kim and Geum [17]

The authors picked four different weight functions and compared these four methods to existing ones by solving four nonlin-
ear equations each having a root with a different multiplicity. The members are:
» SSTZ1
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In the next section we will discuss basins of attraction for these four methods and compare the basins with the best known
third order method for multiple roots, namely Euler-Cauchy’s method (see [18]).
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