Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

In this paper, we consider the matrix generated by boundary value problems for differential

equations of fractional order. In particular, we show that the eigenvalues of these matrices are

On one class of persymmetric matrices generated by boundary value problems for differential equations of fractional order

© 2015 Elsevier Inc. All rights reserved.

霐

^a The State University of the Ministry of Finance of the Russian Federation, Moscow, Moscow State Academy of Municipal Services and Construction Moscow, Russia

^b Laboratoire de Mathèmatiques, Image et Applications, Faculté des Sciences, Université de La Rochelle, Avenu M. Crépeau, La Rochelle 17042, France

^c NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

ABSTRACT

simple and real.

^d ISEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China

ARTICLE INFO

MSC: 26A33 34A08 47A75

Keywords: operator of fractional differentiation persymmetric matrix eigenvectors eigenvalues

1. Introduction

For $f(x) \in L^1(0, 1)$, the function

$$J_{0|x}^{\alpha}f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} f(t) \, dt \in L^{1}(0,1)$$

is called the fractional integral of order $\alpha > 0$ on [0, *x*], and the function

$$J_{x|1}^{\alpha} f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{x}^{1} (t-x)^{\alpha-1} f(t) \, dt \in L^{1}(0,1)$$

is called the fractional integral of order $\alpha > 0$ on [x, 1] (see [1]). Here, $\Gamma(\alpha)$ is the Gamma function of Euler. As it is known, (see [1]), the function $g(x) \in L^1(0, 1)$ given by

$$f(x) = J_{0|x}^{\alpha} g(x)$$

is called the fractional derivative of the function $f(x) \in L^1(0, 1)$ of order $\alpha > 0$ on [0, x]. In the sequel, we will write

$$g(x) = D^{\alpha}_{0|x} f(x).$$

http://dx.doi.org/10.1016/j.amc.2015.06.076 0096-3003/© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author at: Laboratoire de Mathèmatiques, Image et Applications, Faculté des Sciences, Université de La Rochelle, Avenu M. Crépeau, 17042 La Rochelle, France. Tel.: + 33 5 46 42 27 68.

E-mail addresses: aleroev@mail.ru (M. Aleroev), mokhtar.kirane@univ-lr.fr, mkirane@univ-lr.fr (M. Kirane), tyf@lsec.cc.ac.cn (Y-F. Tang).

The fractional derivative $D_{x|1}^{\alpha} f(x)$ of order $\alpha > 0$ of $f(x) \in L^{1}(0, 1)$ on [x, 1] is defined similarly.

Let $\alpha \in \mathbb{R}_+$ and $n = [\alpha]$. The operator $D^{\alpha}_{0|x}$ defined by

$$D_{0|x}^{\alpha}f = D^n J_{0|x}^{n-\alpha}.$$

is called the Riemann–Liouville fractional differential operator of order α whenever the right hand side makes sense.

$$D_{0|x}^{0}u - [\lambda + q(x)]u = 0, \quad 0 < \sigma < \infty.$$
(0.1)

.....

Eq. (0.1) is one of the basic equations for modeling the random walk of a point particle which starts to move at the origin of coordinates in t = 0 on a self-similar fractal set $\Omega \subset \mathbb{R}^n$, $n \ge 2$.

In [2], various variants of Eq. (0.1) are considered, in particular, the equation ($\sigma = 1 + \gamma$)

$$D_{0|x}^{\sigma}u + [\lambda + q(x)]u(x) = 0, \tag{0.2}$$

where

$$D_{0|x}^{\sigma} u = \frac{1}{\Gamma(1-\gamma)} \frac{d}{dx} \int_{0}^{x} \frac{u'(t)}{(x-t)^{\gamma}} dt, \quad 0 < \gamma < 1.$$
(0.3)

Eq. (0.2) was studied, for the first time, in [3] as a model equation of fractional order $1 < \sigma < 2$. In particular, in [3] it was established that Eq. (0.2) with q(x) = 0 subject to the Dirichlet boundary conditions

$$u(0) = 0, \qquad u(1) = 0,$$
 (0.4)

is equivalent to the integral equation

$$\int_0^x (x-t)^{1-\gamma} u(t) \, dt - \int_0^1 x^{1-\gamma} (1-t)^{1-\gamma} u(t) \, dt = \frac{\Gamma(2-\gamma)}{\lambda} u. \tag{0.5}$$

In [2], the fractional oscillatory equation [4]

$$\frac{1}{\Gamma(1-\gamma)} \int_0^x \frac{u''(t)}{(x-t)^{\gamma}} dt + [\lambda + q(x)]u(x) = 0$$
(0.6)

subject to the Dirichlet boundary conditions

$$u(0) = 0, \quad u(1) = 0,$$

is considered. As it was shown in [5], Eq. (0.6) is equivalent to the integral equation

$$\int_0^x (x-t)^{1-\gamma} u(t) \, dt - \int_0^x x(1-t)^{1-\gamma} u(t) \, dt = \frac{\Gamma(2-\gamma)}{\lambda} u(t) \, dt$$

It was shown in [1] that the operator generated by the expression (0.2) and boundary value conditions of Sturm–Liouville type has oscillatory properties.

Operators such as

$$A_{\gamma}^{[\alpha,\beta]}u(x) = c_{\alpha} \int_{0}^{x} (x-t)^{\frac{1}{\alpha}-1}u(t) dt + c_{\beta,\gamma} \int_{0}^{1} x^{\frac{1}{\beta}-1} (1-t)^{\frac{1}{\gamma}-1}u(t) dt$$

are studied in [6].

In this paper, the operator

$$A_{\rho}(u) = \frac{1}{\Gamma(\rho^{-1})} \left[\int_{0}^{x} (x-t)^{\frac{1}{\rho}-1} u(t) dt - \int_{0}^{1} x^{\frac{1}{\rho}-1} (1-t)^{\frac{1}{\rho}-1} u(t) dt \right]$$

 $(0 < \rho < 1)$ is studied by the matrix methods. It seems to us that matrices generated by operators such as $A_{\gamma}^{[\alpha,\beta]}$ will play the same important role in fractional analysis as the matrices studied in [7] in the theory of oscillations.

2. Matrices generated by fractional differential equations and their main properties

Let us rewrite the kernel k(x, t) of Eq. (0.5) as

$$k(x,t) = \theta(x,t)(x-t)^{\mu} - x^{\mu}(1-t)^{\mu}$$

where $\mu = \frac{1}{\rho} - 1$, $\theta(x, t) = \begin{cases} 0, & x \le t, \\ 1, & t \le x. \end{cases}$

We approximate the kernel k(x, t) by a matrix, using the partition of segment [0, 1]:

$$x_0, x_i = \frac{i}{n}, x_n = 1, t_0 = 0, t_j = \frac{j}{n}, t_n = 1, i = 0, \dots, n, j = 0, \dots, n.$$

Download English Version:

https://daneshyari.com/en/article/4626327

Download Persian Version:

https://daneshyari.com/article/4626327

Daneshyari.com