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1. Introduction

In a recent paper Ferrante [1]| proved, among others results, a relation between the nth derivative of a composite function
and the half-integral order modified Bessel functions of the second kind. Since the nth derivative of a composite function can be
expressed in terms of Bell polynomials [2], it is natural to conjecture the possibility to derive a Bell-type representation formula
for these half-integral order modified Bessel functions.

Being related to partitions, the Bell polynomials often appear in Combinatorial Analysis [3]. They have been also applied
in many different situations, such as the Blissard problem (see [3], p. 46), the representation of Lucas polynomials of the first
and second kind [4,5], the construction of recurrence relations for a class of Freud-type polynomials [6], etc. However, in our
opinion, the most important of their applications is connected with the possibility to represent, by using such a powerful tool,
the symmetric function of a countable set of numbers. As a matter of fact, by using Bell polynomials, it is possible to deduce the
relations which generalize the classical algebraic Newton-Girard formulas. Consequently, as it was shown in [7], it is possible
to find reduction formulas for the orthogonal invariants of a strictly Positive Compact Operator, deriving in a simple way the so
called Robert formulas [8].

The above mentioned result by Ferrante gives us the possibility to show another application of Bell polynomials. He starts
from the following expression for the nth derivative ¢S(”) (x) of the function ¢s(x) = esv¥
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where s is a real, unessential, parameterandn=1,2,....
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Eq. (1.1) shows a relation of this nth derivative with the half-integral order modified Bessel functions of the second kind,
defined as (see [9], p. 925)

. (n+k)!
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By putting s = 1in Eq. (1.1), and therefore considering the nth derivative ¢(")(x) of the composite function ¢ (x) = ev*, the result
by Ferrante writes:
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forn=1,2,....

Some other important relation formulas for the nth derivative ¢>S(") (x) and the half-integral order modified Bessel functions
are listed in [10, p. 5], in two entries, 1.1.3.7 and 1.1.3.11.

In this article, after recalling in Section 2 the Bell polynomials, we will first give some relations, similar to Eq. (1.3), involving
the half-integral order modified Bessel functions of the first kind,
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and the half-integral order modified Bessel functions of third kind (or Henkel’s functions)
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Furthermore, in the last section, we will give some explicit representations of all these half-integral order modified Bessel
functions in terms of the Bell polynomials, since these polynomials are considered as the standard mathematical tool for repre-
senting the nth derivative of a composite function.

2. Recalling the Bell polynomials

The problem of finding an explicit expression for the nth derivative of a composite function was first solved by Faa di Bruno
[11]. The relevant problem of finding an efficient computational method was solved by Bell, by means of the introduction of his
polynomials [2], which can be computed recursively, whereas the Faa di Bruno formula is based on the partitions of the integer
n, a set whose cardinality increases in extremely fast way.

Consider the composite function ®(x) := f{g(x)) of functions t = g(x) and y = f(t) defined in suitable intervals of the real axis
and n times differentiable with respect to the relevant independent variables. By using the following notations:

O 1= Dy'P(x), fo =D (O)licgy. & = Dig(x).
the nth derivative can be represented by

Oy =Ya(f1.81: 2.8 fn. 80). (2.1)

where the Yy, are, by definition, the Bell polynomials.
For example one has:

Yi(fi.81) = (&
Ya(fi.81: fo.82) = fig2 + fo8]
Ys(f1.81; .82 f5.83) = f183 + .(38:81) + f>23.

Further examples can be found in [3], p. 49.
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