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Some representation formulas for the modified Bessel functions in terms of Bell polynomials

are derived. In particular, the cases of the half-integral order modified Bessel functions of

the first and second kind are considered. We also consider the case of the half-integral order

modified Bessel functions of the third kind (the so called Henkel’s functions).
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1. Introduction

In a recent paper Ferrante [1] proved, among others results, a relation between the nth derivative of a composite function

and the half-integral order modified Bessel functions of the second kind. Since the nth derivative of a composite function can be

expressed in terms of Bell polynomials [2], it is natural to conjecture the possibility to derive a Bell-type representation formula

for these half-integral order modified Bessel functions.

Being related to partitions, the Bell polynomials often appear in Combinatorial Analysis [3]. They have been also applied

in many different situations, such as the Blissard problem (see [3], p. 46), the representation of Lucas polynomials of the first

and second kind [4,5], the construction of recurrence relations for a class of Freud-type polynomials [6], etc. However, in our

opinion, the most important of their applications is connected with the possibility to represent, by using such a powerful tool,

the symmetric function of a countable set of numbers. As a matter of fact, by using Bell polynomials, it is possible to deduce the

relations which generalize the classical algebraic Newton–Girard formulas. Consequently, as it was shown in [7], it is possible

to find reduction formulas for the orthogonal invariants of a strictly Positive Compact Operator, deriving in a simple way the so

called Robert formulas [8].

The above mentioned result by Ferrante gives us the possibility to show another application of Bell polynomials. He starts

from the following expression for the nth derivative φ(n)
s (x) of the function φs(x) = es
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, x > 0, (1.1)

where s is a real, unessential, parameter and n = 1, 2, . . . .

∗ Corresponding author. Tel.: +39 0657338008.

E-mail addresses: natalini@mat.uniroma3.it (P. Natalini), paoloemilioricci@gmail.com (P.E. Ricci).

http://dx.doi.org/10.1016/j.amc.2015.06.069

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.06.069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.06.069&domain=pdf
mailto:natalini@mat.uniroma3.it
mailto:paoloemilioricci@gmail.com
http://dx.doi.org/10.1016/j.amc.2015.06.069


P. Natalini, P.E. Ricci / Applied Mathematics and Computation 268 (2015) 270–274 271

Eq. (1.1) shows a relation of this nth derivative with the half-integral order modified Bessel functions of the second kind,

defined as (see [9], p. 925)
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2z
e−z

n∑
k=0
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k!(n − k)!(2z)k
, z ∈ C . (1.2)

By putting s = 1 in Eq. (1.1), and therefore considering the nth derivative ϕ(n)(x) of the composite function ϕ(x) = e
√

x, the result

by Ferrante writes:
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( − √
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x)n−1/2 ϕ(n)(x), x > 0, (1.3)

for n = 1, 2, . . . .

Some other important relation formulas for the nth derivative φ(n)
s (x) and the half-integral order modified Bessel functions

are listed in [10, p. 5], in two entries, 1.1.3.7 and 1.1.3.11.

In this article, after recalling in Section 2 the Bell polynomials, we will first give some relations, similar to Eq. (1.3), involving

the half-integral order modified Bessel functions of the first kind,
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and the half-integral order modified Bessel functions of third kind (or Henkel’s functions)
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Furthermore, in the last section, we will give some explicit representations of all these half-integral order modified Bessel

functions in terms of the Bell polynomials, since these polynomials are considered as the standard mathematical tool for repre-

senting the nth derivative of a composite function.

2. Recalling the Bell polynomials

The problem of finding an explicit expression for the nth derivative of a composite function was first solved by Faà di Bruno

[11]. The relevant problem of finding an efficient computational method was solved by Bell, by means of the introduction of his

polynomials [2], which can be computed recursively, whereas the Faà di Bruno formula is based on the partitions of the integer

n, a set whose cardinality increases in extremely fast way.

Consider the composite function �(x) := f(g(x)) of functions t = g(x) and y = f (t) defined in suitable intervals of the real axis

and n times differentiable with respect to the relevant independent variables. By using the following notations:

�m := Dm
x �(x), fh := Dh

t f (t)|t=g(x), gk := Dk
xg(x),

the nth derivative can be represented by

�n := Yn( f1, g1; f2, g2; . . . ; fn, gn), (2.1)

where the Yn are, by definition, the Bell polynomials.

For example one has:

Y1( f1, g1) = f1g1

Y2( f1, g1; f2, g2) = f1g2 + f2g2
1

Y3( f1, g1; f2, g2; f3, g3) = f1g3 + f2(3g2g1) + f3g3
1.

Further examples can be found in [3], p. 49.
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