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This paper studies the existence of extremal solutions for nonlinear fractional differential

equations with nonlinear integral boundary conditions and explores an explicit algorithm

which converges to the extremal solutions of the problem at hand. An example is discussed

for the illustration of the main work.
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1. Introduction

Consider the following nonlinear fractional integral boundary value problem:⎧⎨
⎩

CDαu(t) = f (t, u(t), u(θ(t))), n < α ≤ n + 1, n ≥ 2, n ∈ N, t ∈ J = [0, 1],

u′(0) = u′′(0) = u′′′(0) = · · · = u(n)(0) = 0,

u(0) = ∫ 1

0 g(s, u(s))ds + λ,

(1.1)

where t ∈ J = [0, 1], CDα is the standard Caputo fractional derivative and f ∈ C( J × R × R, R), g ∈ C( J × R, R), θ ∈ C( J, J), λ ≥ 0.

Fractional calculus has been investigated in diverse directions by several researchers. The recent development covers the theo-

retical as well as potential applications of the subject in physical and technical sciences. Specific examples include physics, chem-

istry, biomathematics, signal and image processing, viscoelasticity, electrical networks, porous media, aerodynamics, modeling

for physical phenomena exhibiting anomalous diffusion, economics, and so forth. An important characteristic of a fractional-

order differential operator is its nonlocal nature that takes into account the hereditary properties of many materials and pro-

cesses. This aspect of fractional-order operators has motivated the modelers to make use of the tools of fractional calculus in the

mathematical modelling of many real world problems. For further details, we refer the reader to the texts [1,2].

The study of boundary value problems in the setting of fractional calculus has received a great attention in the last decade

and a variety of results concerning the existence of solutions, based on various analytic techniques, can be found in the literature

[3–22]. The existence theory for fractional boundary value problems, no doubt, provides the basis for onward exploration of

the subject. Once the existence of a solution is established, it is equally important to find it, preferably in an analytic form.

✩ This work is supported by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Nos. 2014135 and 2014136) and

Natural Science Foundation for Young Scientists of Shanxi Province, China (no. 2012021002–3).
∗ Corresponding author. Tel.: +86 18935042188/98.

E-mail addresses: zhanglih149@126.com (L. Zhang), bashirahmad_qau@yahoo.com (B. Ahmad), wgt2512@163.com (G. Wang).

http://dx.doi.org/10.1016/j.amc.2015.06.049

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.06.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.06.049&domain=pdf
mailto:zhanglih149@126.com
mailto:bashirahmad_qau@yahoo.com
mailto:wgt2512@163.com
http://dx.doi.org/10.1016/j.amc.2015.06.049


L. Zhang et al. / Applied Mathematics and Computation 268 (2015) 388–392 389

An interesting and useful analytic strategy that not only ensures the existence of solutions for such problems but also provides

means for finding them is the monotone iterative technique coupled with the concept of upper and lower solutions. For examples

and details, see [23–32]. Motivated by this approach, we seek the extremal solutions for the problem (1.1).

The paper is organized as follows. In Section 2, we obtain an auxiliary lemma that plays a key role in establishing the proposed

work. A comparison result is also discussed. Section 3 contain the main result and an example illustrating it.

2. Preliminaries

Definition 2.1. We say that u(t) is called a lower solution of problem (1.1) if⎧⎨
⎩

CDαu(t) ≤ f (t, u(t), u(θ(t))), n < α ≤ n + 1, n ≥ 2, n ∈ N,

u′(0) = u′′(0) = u′′′(0) = · · · = u(n)(0) = 0,

u(0) ≤ ∫ 1

0 g(s, u(s))ds + λ,

and it is an upper solution of (1.1) if the above inequalities are reversed.

Definition 2.2. The Riemann–Liouville fractional integral of order α for a function f is defined as

Iα f (t) = 1

�(α)

∫ t

0

(t − s)α−1 f (s)ds, α > 0,

provided that such integral exists.

Definition 2.3. For at least n-times absolutely continuously differentiable function f : [0, ∞) → R, the Caputo derivative of frac-

tional order α is defined as

CDα f (t) = 1

�(n − α)

∫ t

0

(t − s)n−α−1 f (n)(s)ds, n = [α] + 1,

where [α] denotes the integer part of the real number α.

Lemma 2.1. Let n < α ≤ n + 1, n ≥ 2, n ∈ N, ξ 	= 1 and y ∈ C[0, 1]. Then the linear fractional integral boundary value problem⎧⎨
⎩

CDαu(t) = y(t), 0 < t < 1,

u′(0) = u′′(0) = u′′′(0) = · · · = u(n)(0) = 0,

u(0) = ξ
∫ 1

0 u(s)ds + λ,

(2.1)

has a unique solution

u(t) =
∫ 1

0

G(t, s)y(s)ds + λ

1 − ξ
,

where

G(t, s) =

⎧⎪⎨
⎪⎩

α(t − s)α−1(1 − ξ) + ξ(1 − s)α

(1 − ξ)�(α + 1)
, 0 ≤ s ≤ t ≤ 1,

ξ (1 − s)α

(1 − ξ)�(α + 1)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Proof. One can transform the equation CDαu(t) = y(t) to an equivalent integral equation

u(t) = Iαy(t) +
n∑

i=0

bit
i =

∫ t

0

(t − s)α−1

�(α)
y(s)ds +

n∑
i=0

bit
i,

for some bi ∈ R(i = 0, 1, 2, . . . , n).
Applying the conditions u′(0) = u′′(0) = u′′′(0) = · · · = u(n)(0) = 0 and u(0) = ξ

∫ 1
0 u(s)ds + λ, we obtain that b1 = b2 = b3 =

· · · = bn = 0 and

b0 = ξ

∫ 1

0

u(s)ds + λ.

So, it holds that

u(t) =
∫ t

0

(t − s)α−1

�(α)
y(s)ds + ξ

∫ 1

0

u(s)ds + λ. (2.3)

Letting
∫ 1

0 u(s)ds = B, and integrating both sides of (2.3), we have
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