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a b s t r a c t

After a concise survey, the expanded Ikebe algorithm for inverting the lower half plus the

superdiagonal of an n × n unreduced upper Hessenberg matrix H is extended to general non-

singular upper Hessenberg matrices by computing, in the reduced case, a block diagonal form

of the factor matrix HL in the inverse factorization H−1 = HLU
−1. This factorization enables

us to propose hybrid and accurate (nongaussian) procedures for computing H−1. Thus, HL is

computed directly in the aim to be used as a fine initial guess for Newton’s iteration, which

converges to H−1 in a suitable number of iterations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In addition to their main role in linear algebra and matrix theory, the inverses of nonsingular square matrices have a lot of

applications in scientific and engineering problems. It is remarkable its increasing utility in analyzing stimulus-response relation-

ships of natural and artificial systems. The more extended and practical method for inverting square matrices is the LU method

with partial pivoting strategies, and then using backward (or forward) substitution in the inversion of the resulting triangular

matrices [1].

The n × n nonsingular Hessenberg matrices H = (hi j)
n
i, j=1

, with hi j = 0 for i ≥ j + 2, are prototypical. These matrices are

profusely used in control theory as a consequence of its impact in the eigenvalue problem, after reducing a square nonsingular

matrix to its Hessenberg form by unitary (Givens or Householder) transformations in O(n3) time. Without loss of generality,

we consider upper Hessenberg matrices. Closed form representations for the entries of the inverses of nonsingular Hessen-

berg matrices, based on determinants of some principal submatrices, are known [2]. These are of theoretical interest. As a rule,

when computing the large recurrence relations of the involved determinants, bad numerical performance is observed [3]. The

Hessenberg matrices can be inverted in O(n3) time using substitution schemes. Indeed, LU-factorizable Hessenberg matrices can

be LU factored stably in O(n2) time. For no LU-factorizable Hessenberg matrices, the partial pivoting is commonly used. How-

ever partial pivoting, e.g. row-interchange operations, can destroy the low rank structure and sparsity of the lower half of the

Hessenberg matrices. Thus, some literature has been dedicated to the search of specific (nongaussian) procedures for inverting

unreduced Hessenberg matrices [4,5]. Recall that an order n upper Hessenberg matrix H = (hi j)
n
i, j=1

is unreduced if the entries

on its subdiagonal are nonzero, hi+1,i �= 0, i = 1, 2, . . . , n − 1. The particular low rank structure can be exploited in the inversion
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procedure; see e.g. [6,7]. Thus, the matrix inverse of an unreduced upper Hessenberg matrix can be seen as a rank-one perturba-

tion of a strictly upper triangular matrix,

H−1 =

⎛⎜⎜⎜⎜⎜⎝
0 t12 t13 · · · t1n

0 0 t23 · · · t2n

0 0 0
. . .

...
...

...
...

. . . tn−1,n

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
y1

y2

y3

...
yn

⎞⎟⎟⎟⎟⎠(x1 x2 x3 · · · xn). (1)

The complexity of this decomposition, O(n3), is equivalent that of back substitution for inverting H(2 : n, 1 : n − 1), the triangular

submatrix resulting to delete the first row and the last column of H. Note also that the decomposition (1) is not applicable on

inverses of reduced Hessenberg matrices.

The Ikebe algorithm [8] computes the entries of the lower half of the inverses of unreduced upper Hessenberg matri-

ces in O(n2) time. More precisely, it computes the vectors y and x of the inverse decomposition (1). Some important classes

of unreduced Hessenberg matrices can be inverted directly using the Ikebe algorithm, e.g. unreduced tridiagonal matrices

[8].

Example 1 (Inverses of upper Hessenberg–Toeplitz matrices). As an illustration, we apply the Ikebe algorithm on nonsingular

Hessenberg–Toeplitz matrices, with entries Hi,i−1 = h0 �= 0, Hi j = h j−i+1, for 1 ≤ i ≤ j ≤ n, and Hi j = 0, otherwise,

H =

⎛⎜⎜⎜⎜⎜⎜⎝

h1 h2 h3 · · · hn

h0 h1 h2

. . .
...

0 h0 h1

. . . h3

...
. . .

. . .
. . . h2

0 · · · 0 h0 h1

⎞⎟⎟⎟⎟⎟⎟⎠. (2)

For the Hessenberg–Toeplitz matrix (2), the row vector of (1) is x = xi = |Hi−1|/(−h0)
i−1, i = 1, 2, . . . , n. Here |Hi−1| denotes the

determinant of the (left) principal submatrix of order i − 1. Take |H0| = 1. The row vector x is sufficient for a closed form (1) of

the matrix inverse,

H−1 = 1

h0

⎛⎜⎜⎜⎜⎜⎝
0 1 x2 · · · xn−1

0 0 1 · · · xn−2

0 0 0
. . .

...
...

...
...

. . . 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ + ( − h0)
n−1

|H|

⎛⎜⎜⎜⎜⎝
xn

...
x3

x2

1

⎞⎟⎟⎟⎟⎠(1 x2 x3 · · · xn), (3)

where the determinant |H| = (−h0)
n−1x·H(:, n), and H(:, n) is the last column of H. Hence, it is known that the matrix inverse of

Hessenberg–Toeplitz matrices can be computed in O(n2) time.

For unreduced upper Hessenberg matrices, a lower triangular matrix L with the entries of the lower half of H−1 is computed

with the Ikebe algorithm. It is interesting for the LU factorization of the matrix inverse. Although, when H−1 is not LU-factorizable,

the matrix L supplied by the Ikebe algorithm is singular. Nevertheless, the superdiagonal of the matrix inverse can be computed

without additional computational effort using an expanded Ikebe method. Thus, a general factorization for the matrix inverse,

applicable also on reduced Hessenberg matrices, was obtained in [9],

H−1 = HLU
−1, (4)

where the lower Hessenberg matrix HL is quasiseparable [10], and U−1 is an upper triangular matrix with ones on its main

diagonal. Such an inverse factorization is not unique and it characterizes the nonsingular upper Hessenberg matrices. Thus in the

unreduced case a matrix HL, with the same lower half plus the superdiagonal than H−1, is computed with the expanded Ikebe

algorithm. A forward substitution scheme for computing U−1 was also used in [9].

For nonsingular reduced Hessenberg matrices, the Ikebe algorithm does not work. If H has only a zero on its subdiagonal, H

is a 2 × 2 block upper triangular matrix. The matrix entries H11 and H22 are unreduced Hessenberg and these can be inverted

easily. We can use the Schur complement for computing the block entry (H12)
−1, i.e. (H12)

−1 = −(H11)
−1H12(H22)

−1. Note that

H21 and (H21)
−1 are zero matrices. When the number of zeros on the subdiagonal of H increases, we can design a block procedure

for completing the upper half of H−1 by using the Schur complement in a reiterated way. As a rule, this block strategy has bad

numerical performance.

The rank structure method has been used for inverting some classes of matrices that generalize the Hessenberg matrices; see

e.g. [7,11–13].
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