EI SEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A Fast Parallel Algorithm for Constructing Independent Spanning Trees on Parity Cubes*

Yu-Huei Chang^a, Jinn-Shyong Yang^b, Jou-Ming Chang^{c,*}, Yue-Li Wang^a

- ^a Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
- ^b Department of Information Management, National Taipei University of Business, Taipei, Taiwan, ROC
- ^c Institute of Information and Decision Sciences, National Taipei University of Business, Taipei, Taiwan, ROC

ARTICLE INFO

Keywords: Parallel algorithms Independent spanning trees Parity cubes Interconnection networks

ABSTRACT

Zehavi and Itai (1989) proposed the following conjecture: every k-connected graph has k independent spanning trees (ISTs for short) rooted at an arbitrary node. An n-dimensional parity cube, denoted by PQ_n , is a variation of hypercubes with connectivity n and has many features superior to those of hypercubes. Recently, Wang et al. (2012) confirmed the ISTs conjecture by providing an $\mathcal{O}(N\log N)$ algorithm to construct n ISTs rooted at an arbitrary node on PQ_n , where $N=2^n$ is the number of nodes in PQ_n . However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we present a non-recursive and fully parallelized approach to construct n ISTs rooted at an arbitrary node of PQ_n in $\mathcal{O}(\log N)$ time using N processors. In particular, the constructing rule of spanning trees is simple and the proof of independency is easier than ever before.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A set of spanning trees in a graph G is called *independent spanning trees* (ISTs for short) if all the trees are rooted at the same node r such that, for any node $v(\neq r)$ in G, the paths from v to r in any two trees are internally node-disjoint, i.e., there exists no common node in the two paths except the two end nodes v and r. Constructing multiple ISTs in networks have been studied from not only the theoretical point of view but also some practical applications, such as fault-tolerant broadcasting [1,10] and secure message distribution [1,12,16].

For a graph G, its node set and edge set are denoted by V(G) and E(G), respectively. If F is a subset of V(G), we denote by G - F the graph obtained from G by removing F. A graph G is k-connected if |V(G)| > k and G - F is connected for every subset $F \subseteq V(G)$ with |F| < k. Zehavi and Itai [20] proposed the following conjecture: If G is a k-connected graph and $F \in V(G)$ is an arbitrary node, then G has K ISTs rooted at K. From then on, the conjecture has been confirmed only for K-connected graphs with $K \le 4$ (see [6,7,10,20]), and it is still open for arbitrary K-connected graphs when $K \ge 5$. Moreover, by providing construction schemes of ISTs, the conjecture has been proved to be affirmative for several restricted classes of graphs (see recent papers [2–5,15–18] and the references quoted therein).

Wang and Zhao [13] first introduced the family of parity cubes (a synonym called twisted-cubes in that paper) as a variant of hypercubes. Note that although the synonym "twisted-cube" has a similar name to the twisted cube defined in [9], the two

[†] This research was partially supported by National Science Council under the grants MOST103-2221-E-141-001 and MOST103-2221-E-141-002.

^{*} Corresponding author. Tel.: +886223226505.

E-mail address: spadechang@icloud.com, spade@ntub.edu.tw (J.-M. Chang).

graphs are completely different. In order to distinguish twisted-cubes from twisted cubes, Wang et al. [15] suggested to use parity cubes instead of twisted-cubes. The n-dimensional parity cube, denoted as PQ_n , has many features superior to those of normal hypercube Q_n . For example, Wang and Zhao [13] showed that the diameter of PQ_n is $\lceil (n+1)/2 \rceil$, which is about half that of Q_n for a sufficiently large dimension n. So far the study of properties for PQ_n has received less attention except for [11,14,15]. Park et al. [11] proved that PQ_n is (n-2)-hamiltonian and (n-3)-hamiltonian connected for any integer $n \ge 3$. Wang et al. [14] provided embedding schemes such that meshes can be embedded into PQ_n . Since it has been proved in [13] that PQ_n has the connectivity n, Wang et al. [15] proposed an algorithm to construct n ISTs rooted at an arbitrary node in $\mathcal{O}(N \log N)$ time for PQ_n , where $N=2^n$ is the number of nodes in PQ_n . However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we present a non-recursive and fully parallelized approach for constructing n ISTs rooted at an

The rest of this paper is organized as follows. Section 2 formally gives the definition of parity cubes and provides some useful terminologies and notations. Section 3 presents our algorithm to construct n ISTs in PQ_n . Section 4 proves the correctness of the algorithm. The final section contains our concluding remarks.

2. Preliminaries

Let $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. For any integer $n \ge 1$, a binary string x of length n will be written as $x_{n-1}x_{n-2} \cdots x_0$, where $x_i \in \{0, 1, \dots, n-1\}$. 1} for each $i \in \mathbb{Z}_n$. In particular, x_i is called the *i*th bit of x and $x_{n-1}x_{n-2}\cdots x_i$ for each $i \in \mathbb{Z}_n$ is called a *prefix* of x. The complement of x_i is denoted by \bar{x}_i . For two binary strings x and y of length n, we define $x + y = z_{n-1}z_{n-2} \cdots z_0$, where $z_i = (x_i + y_i) \pmod{2}$ for any $i \in \mathbb{Z}_n$. That is, the operation "+" in x + y is the modulo 2 addition. Also, we use e_i to denote an n-bit binary string whose ith bit is 1 and all the other bits are 0. Clearly, $x + e_i = x_{n-1}x_{n-2} \cdots x_{i+1}\bar{x}_ix_{i-1} \cdots x_0$. Furthermore, for any integer $p \in \{0, 1\}$, we define $p \cdot x = x'_{n-1} x'_{n-2} \cdots x'_0$ where $x'_i = p \cdot x_i \pmod{2}$. Similar to the *n*-dimensional hypercube, the *n*-dimensional parity cube PQ_n is an *n*-regular graph of 2^n nodes in which each

node is labeled by a unique binary string of length n. Originally, PQ_n can be recursively defined as follow.

Definition 1. [13] The *n*-dimensional parity cube, PQ_n , is recursively defined as follows:

- (1) PO_1 is defined as the complete graph with two vertices labeled 0 and 1, PO_2 is a graph consisting of four vertices labeled with 00, 01, 10, and 11, respectively, and connected by four edges (00, 01), (00, 10), (01, 11), and (10, 11). PQ₃ is the twisted
- (2) For $n \ge 4$, PQ_n is constructed from two disjoint copies of PQ_{n-1} , according to the following rules. For $i \in \{0, 1\}$, let PQ_{n-1}^i denote the graph obtained from PQ_{n-1} by adding a prefix bit i in the front of the label of each node $x \in V(PQ_{n-1})$. Then connect each node $u = u_{n-1}u_{n-2}\cdots u_0$ in PQ_{n-1}^0 with the node $v = v_{n-1}v_{n-2}\cdots v_0$ in PQ_{n-1}^1 as follows:

$$v = u + e_{n-1} + \sum_{k=0}^{\lfloor \frac{n-2}{2} \rfloor} u_{2k} \cdot e_{2k+1} + \sum_{k=2}^{n-2} u_k \cdot e_1.$$

Fig. 1 demonstrates PQ_3 and PQ_4 , respectively.

In what follows, a substitutional definition of parity cubes will be given. Two binary strings $x = x_1x_0$ and $y = y_1y_0$ are pairrelated, denoted by $x \sim y$, if and only if $(x, y) \in \{(00, 00), (10, 10), (01, 11), (11, 01)\}$. Note that this definition has been used to define another variant of hypercubes called crossed cubes [8]. According to the definition of pair relation, parity cubes can be equivalently defined by the following non-recursive fashion:

Definition 2. Let $n \ge 1$ be an integer. Two nodes $x = x_{n-1}x_{n-2} \cdots x_0$ and $y = y_{n-1}y_{n-2} \cdots y_0$ are joined by an edge in PQ_n if and only if there exists an integer $i \in \mathbb{Z}_n$ such that

- (1) $y_{n-1}y_{n-2}\cdots y_{i+1}=x_{n-1}x_{n-2}\cdots x_{i+1};$ (2) $y_i \neq x_i$;
- (3) $y_{i-1} = x_{i-1}$ if *i* is odd;
- (4) If $i \ge 2$, then

$$(4.1) \ y_{2j+1}y_{2j} \sim x_{2j+1}x_{2j} \text{ for } 0 < j < \lfloor i/2 \rfloor;$$

$$(4.2) \ y_1 = \begin{cases} \sum_{j=0}^{i-1} x_j, & \text{if } x_i = 0; \\ x_{i-1} + x_0 + \sum_{j=1}^{\lfloor \frac{i-1}{2} \rfloor} x_{2j-1}, & \text{otherwise}; \end{cases}$$

$$(4.3) \ y_0 = x_0.$$

In the above definition, y is said to be the *i-neighbor* of x, and for notational convenience we write $y = N_i(x)$. For example, if we consider the node $x = 011011_2 = 27$ in PQ_6 , then $N_0(x) = 011010$, $N_1(x) = 011001$, $N_2(x) = 011101$, $N_3(x) = 010001$, $N_4(x) = 010001$, $N_4(x) = 010001$, $N_4(x) = 010001$, $N_4(x) = 011001$, $N_4(x) = 01$ 001011 and $N_5(x) = 111001$.

Throughout this paper, we also use the following notations. Two paths P and Q joining two distinct nodes x and y are internally node-disjoint, denoted by P|Q, if $V(P) \cap V(Q) = \{x, y\}$. Let T be a spanning tree rooted at node r of PQ_n . The parent of a node $x \in A$ r) in T is denoted by parent(T, x). For $x, y \in V(T)$, the unique path from x to y is denoted by T[x, y]. Hence, two spanning trees T and T' with the same root r are ISTs if and only if T[x, r] || T'[x, r] for every node $x \in V(T) \setminus \{r\}$.

Download English Version:

https://daneshyari.com/en/article/4626354

Download Persian Version:

https://daneshyari.com/article/4626354

<u>Daneshyari.com</u>