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The purpose of this paper is to investigate the problem of robust passivity analysis for delayed

stochastic impulsive neural networks with leakage and additive time-varying delays. The

novel contribution of this paper lies in the consideration of a new integral inequality proved

to be well-known Jensen’s inequality and takes fully the relationship between the terms in the

Leibniz–Newton formula within the framework of linear matrix inequalities (LMIs). By con-

structing a suitable Lyapunov–Krasovskii functional with triple and four integral terms using

Jensen’s inequality, integral inequality technique and LMI frame work, which guarantees sta-

bility for the passivity of addressed neural networks. This LMI can be easily solved via convex

optimization techniques. Finally, two interesting numerical examples are given to show the

effectiveness of the theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As is well-known that neural networks (NNs) have received intensive interest due to their wide applications in classification

of pattern recognition, static image processing, signal processing, optimization problems, mechanics of structures and materials,

smart antenna arrays and other scientific areas [1–49]. However the phenomena of time delay is commonly encountered in var-

ious physical and engineering systems such as in nuclear reactor, mechanical systems, biological systems, chemical processes,

rolling mill, hydraulic systems, etc. Hence, these applications depend crucially on the dynamical behaviors (e.g., stability, insta-

bility, periodic oscillatory and chaos) of the neural networks, especially the stability of addressed problem. Therefore, stability

analysis of NNs has received much more attention over the past years (see [1–4]). Time delays are inevitable in the implementa-

tion of artificial neural networks as a result of the finite switching speed of amplifier. Therefore, various issues of neural networks

with time delays have been addressed, and many results have been reported in the literature (see, e.g., [5–49] and the references

therein).

It is well known that the dissipativity theory plays an important role in the stability analysis of dynamical systems, nonlinear

control and other areas (see,e.g., [5–16] and the references therein). Passivity, as a special case of dissipativity, tells more than just

stability, which relates the input and output to the storage function, and hence defines a set of useful input–output properties.

This is in contrast to Lyapunov stability which concerns the internal stability of a system. Passivity is a widely adopted tool for
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analyzing the stability of dynamical systems and is used in several domains of engineering sciences, such as in the analysis of

electrical circuits, mechanical systems, chemical processes, electromechanical systems, control over networks, hybrid systems,

etc. When we modeling real nervous systems, which are usually subjected to time delay, stochastic and impulsive perturbations

that in turn affect dynamical behaviors of the systems. So it is important to consider the problems with influences of time delay,

stochastic and impulsive perturbations.

Now, it has been well recognized that stochastic phenomenon is nearly inevitable owing to thermal noise in electronic de-

vices in implementations of neural networks. Some stochastic input could destabilize a neural network. Therefore, the stability

problem for stochastic networks with time delay becomes more important from the practical point of view, see, for instance

[8,10–15,20,22,25,28,30,31,44]. Recently, a special type of time delay, namely, leakage delay (or forgetting delay), is identified

and investigated due to its existence in many real systems such as neural networks, population dynamics, control systems and

some fuzzy systems such as in [10,16–21,24,25,44]. Moreover, sometimes it has more significant effect on dynamics of neural

networks than other kind of delays. Hence, it is significant important to consider the leakage delay effects on dynamics of neural

networks. It has been shown that such kind of time delay (leakage delay) has a tendency to destabilize a system. Impulsive is also

a phenomenon that has been taken into consideration when modeling the neural networks. Impulsive phenomenon, as well as

time delays, can influence the dynamical behavior of the neural networks. Therefore, it is more important to study the stability

of delayed neural networks with impulsive perturbations for instance can see related impulsive problems have been existing in

literature, see [15,22–31,44].

Recently, the authors in [32–44] reported that the signals transmitted, in the network control system, from one point to

another passes through few segments of networks, which can possibly induce successive delays with different properties due

to the variable network transmission conditions which may cause time delay with some different characteristics in practical

applications. Based on this, a new model for neural networks with two additive time-varying delays has been proposed in [32–

34]. For example, the time delay in the dynamical model such as ẋ(t) = Ax(t) + BKx(t − τ1(t) − τ2(t)) where τ 1(t) is the time

delay induced from sensor to controller and τ 2(t) is the delay induced from controller to the actuator. The stability analysis

for such systems has been carried out in [35,37,38] by using two additive time-varying delay components, τ1(t) + τ2(t) = τ(t).

Compared with the single-delay systems, this model is under a stronger background of application. Therefore, taking the model

with two additive time-varying delay components into consideration is meaningful. Recently, Xiao and Jia [34] derived a stabil-

ity problem for neural networks with two additive time-varying delay components. By constructing the Lyapunov–Krasovskii

functional and considering the relationship between time-varying delays and their upper delay bounds, delay-dependent sta-

bility criteria are obtained by using reciprocally convex method and convex polyhedron method respectively. Shao and Han

[39] discussed the stability and stabilization problem for systems with two additive time-varying input delays arising from

networked control systems. A new Lyapunov functional is constructed and a tighter upper bound of the derivative of the Lya-

punov functional is derived by applying a convex polyhedron method. Very recently, Liu et al. [42] consider the problem of

robust stability of uncertain neural networks with two additive time varying delay components. The activation functions are

monotone nondecreasing with known lower and upper bounds. By constructing of a modified augmented Lyapunov func-

tion, some new stability criteria are established in term of linear matrix inequalities (LMIs), which is easily solved by various

convex optimization techniques. More recently, Rakkiyappan et al. [43] focused on the problem of synchronization for sin-

gular complex dynamical networks with Markovian jumping parameters and two additive time-varying delay components.

Based on the appropriate Lyapunov–Krasovskii functional, introducing some free weighting matrices and using convexity of

matrix functions, a novel synchronization criterion is derived. Currently, Jun et al. [44] presented the stability problem for

a class of impulsive neural networks model, which includes simultaneously parameter uncertainties, stochastic disturbances

and two additive time-varying delays in the leakage term. However, to the best of our knowledge, there is no work that con-

siders the problem of passivity analysis for a class of stochastic impulsive neural networks with leakage and additive time-

varying delays via convex optimization technique available in the existing literature. Therefore, this motivates our present study

the problem of passivity analysis for a class of stochastic impulsive neural networks with leakage and additive time-varying

delays.

Motivated by the above discussions, the main objective of this paper is to study of passivity analysis for a class of ad-

dressed neural networks. We introduce a new Lyapunov–Krasovskii functional by taking the information of integral terms

leakage delay and derivative of variables into account and moreover, the leakage delay occurs not only in single and dou-

ble integral terms also in triple and four integral terms in order to derive the desirable results. All the derived conditions

obtained here are expressed in terms of LMIs whose feasibility can be easily checked by using numerically efficient MAT-

LAB LMI Control toolbox. Finally, two numerical examples are given to show the effectiveness and advantage of the present

results.

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×n denote, respectively, the n-dimensional

Euclidean space and the set of all n × n real matrices. ‖.‖ refers to the Euclidean vector norm. AT represents the transpose

of matrix A and the asterisk “∗” in a matrix is used to represent the term which is induced by symmetry. I is the identity

matrix with compatible dimension. X > Y means that X and Y are symmetric matrices, and that X − Y is positive definite.

Let (�,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right

continuous and F0 contains all P-null sets). E{·} stands for the mathematical expectation operator with respect to the given

probability measure P . Denote by L2
F0

([−τ, 0], R
n) the family of all F0-measurable C([−τ, 0], R

n)-valued random variables � =
{�(s) : s ∈ [−τ, 0]} such that sups∈[−τ,0]E{| �(s) |} < ∞. Matrices, if not explicitly specified, are assumed to have compatible

dimensions.
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