Generalized coupled fixed points and its application to a class of systems of functional equations arising in dynamic programming

J. Harjani, J. Rocha, K. Sadarangani*
Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, Las Palmas de Gran Canaria 35017, Spain

A R T I C L E I N F O

MSC:

47H10

Keywords:

Coupled fixed point
Functional equation
Dnamic programming

Abstract

In this paper, we introduce the definition of generalized coupled fixed point in the space of the bounded functions on a set S and we prove a result about the existence and uniqueness of such points. As an application of our result, we study the problem of existence and uniqueness of solutions for a class of systems of functional equations which appears in dynamic programming.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Banach contraction mapping principle is one of the pivotal results of analysis. Its significance lies in its vast applicability in a great number of branches of mathematics and other sciences.

Generalizations of the above principle have been objects of study in a lot of papers appearing in the literature. Particularly, one of these generalizations is due to Rhoades [1] and he uses weakly contractive mappings. Earlier to present the definition of this class of mappings, we introduce the class \mathcal{A} of functions $\varphi:[0, \infty] \rightarrow[0, \infty]$ which is nondecreasing and $\varphi(t)=0$ if and only if $t=$ 0 . Examples of functions in the class \mathcal{A} are $\varphi(t)=\lambda t$ with $\lambda \in(0,1), \varphi(t)=\operatorname{arctgt}, \varphi(t)=\ln (1+t)$ and $\varphi(t)=\frac{t}{1+t}$, among others.
Definition 1. Let (X, d) be a metric space and let $T: X \rightarrow X$ be a mapping. We say that T is weakly contractive if, for any $x, y \in X$,

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y))
$$

where $\varphi \in \mathcal{A}$.
The following fixed point theorem which appears in [1] will be a crucial tool in our study.
Theorem 1 ([1]). Let (X, d) be a complete metric space and $T: X \rightarrow X$ a weakly contractive mapping. Then T has a unique fixed point.
Remark 1. In [1], the author assumes that $\lim _{t \rightarrow \infty} \varphi(t)=\infty$ and the continuity of φ, but a detailed analysis of the proof says us that these conditions are superfluous.

The main purpose of this paper is to introduce the definition of generalized coupled fixed point, to prove a result about the existence and uniqueness of these points and to apply the result to a problem which appears in dynamic programming. Our main tool in our study is Theorem 1.

This topic has been treated recently in some papers (see, for example [2-6]).

[^0]
2. Main result

In this section, we consider a nonempty set S and by $B(S)$ we will denote the set of all bounded real functions defined on S. According to the ordinary addition of functions and scalar multiplication, $B(S)$ is a real vectorial space on \mathbb{R}. In $B(S)$, we consider the classical norm

$$
\|u\|=\sup _{x \in S}|u(x)|, \quad \text { for } u \in B(S),
$$

and it is well known that $(B(S),\|\cdot\|)$ is a Banach space.
Notice that the distance in $B(S)$ is given by

$$
d(u, v)=\sup \{|u(x)-v(x)|: x \in S\}, \quad \text { for } u, v \in B(S)
$$

Definition 2. Suppose that $G: B(S) \times B(S) \rightarrow B(S)$ and $\alpha: B(S) \rightarrow B(S)$ are two mappings. An element $(u, v) \in B(S) \times B(S)$ is called an α-coupled fixed point of G if $G(u, v)=u$ and $G(\alpha(u), \alpha(v))=v$.

Earlier to present our main result, we needed to introduce the class of functions \mathcal{B} given by those functions $\varphi:[0, \infty] \rightarrow[0, \infty]$ which are nondecreasing and such that $I-\varphi \in \mathcal{A}$, where I denotes the identity mapping on $[0, \infty]$ and \mathcal{A} is the class of functions introduced in Section 1.

Examples of functions belonging to \mathcal{B} are $\varphi(t)=\operatorname{arctgt}, \varphi(t)=\ln (1+t)$, among others.
We are ready to present the main result of the paper which gives us sufficient condition for the existence and uniqueness of an α-coupled fixed point.

Theorem 2. Suppose that $G: B(S) \times B(S) \rightarrow B(S)$ and $\alpha: B(S) \rightarrow B(S)$ are two mappings. Assume that G satisfies $d(G(x, y), G(u, v)) \leq$ $\varphi(\max (d(x, u), d(y, v)))$, for any $x, y, u, v \in B(S)$, where $\varphi \in \mathcal{B}$, and that the mapping α is non-expansive (this means that $d(\alpha(x), \alpha(y))$ $\leq d(x, y)$ for any $x, y \in B(S)$. Then G has a unique α-coupled fixed point.

Proof. Consider the cartesian product $B(S) \times B(S)$ endowed with the distance

$$
\bar{d}((x, y),(u, v))=\max (d(x, u), d(y, v))
$$

for any $(x, y),(u, v) \in B(S) \times B(S)$. It is known that $(B(S) \times B(S), \bar{d})$ is a complete metric space.
Now, we consider the mapping $\bar{G}: B(S) \times B(S) \rightarrow B(S) \times B(S)$ defined by

$$
\bar{G}(x, y)=(G(x, y), G(\alpha(x), \alpha(y))) .
$$

Next, we check that \bar{G} satisfies assumptions of Theorem 1, i.e., \bar{G} is a weakly contractive mapping on $B(S) \times B(S)$.
In fact, taking into account our assumption, for any $x, y, u, v \in B(S)$, we have

$$
\begin{aligned}
\bar{d}(\bar{G}(x, y), \bar{G}(u, v)) & =\bar{d}((G(x, y), G(\alpha(x), \alpha(y))),(G(u, v), G(\alpha(u), \alpha(v)))) \\
& =\max \{d(G(x, y), G(u, v)), d(G(\alpha(x), \alpha(y)), G(\alpha(u), \alpha(v)))\} \\
& \leq \max \{\varphi(\max (d(x, u), d(y, v))), \varphi(\max (d(\alpha(x), \alpha(u)), d(\alpha(y), \alpha(v))))\} .
\end{aligned}
$$

Since the mapping α is non-expansive, $\max (d(\alpha(x), \alpha(u)), d(\alpha(y), \alpha(v))) \leq \max (d(x, u), d(y, v))$, and, since φ is nondecreasing, we infer

$$
\begin{aligned}
\bar{d}(\bar{G}(x, y), \bar{G}(u, v)) & \leq \varphi(\max (d(x, u), d(y, v))) \\
& =\max (d(x, u), d(y, v))-(\max (d(x, u), d(y, v))-\varphi(\max (d(x, u), d(y, v))))
\end{aligned}
$$

Now, taking into account that $\varphi \in \mathcal{B}$ and, consequently, $I-\varphi \in \mathcal{A}$, from the last expression we obtain that \bar{G} is a weakly contractive mapping. By using Theorem 1 , there exists a unique $\left(x_{0}, y_{0}\right) \in B(S) \times B(S)$ such that $\bar{G}\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$. This means that $G\left(x_{0}, y_{0}\right)=x_{0}$ and $G\left(\alpha\left(x_{0}\right), \alpha\left(y_{0}\right)\right)=y_{0}$ and, therefore, $\left(x_{0}, y_{0}\right)$ is the unique α-coupled fixed point of G.

This finishes the proof.
Remark 2. Notice that the same argument used in the proof of Theorem 2 works when we consider as mapping \bar{G} the one defined by $\bar{G}(x, y)=(G(y, x), G(\alpha(y), \alpha(x)))$ or $\bar{G}(x, y)=(G(x, y), G(\alpha(y), \alpha(x)))$, for example, and we obtain existence and uniqueness of other class of coupled fixed points.

3. Application to dynamic programming

The following types of systems of functional equations

$$
\left\{\begin{array}{l}
u(x)=\sup _{y \in D}\{g(x, y)+F(x, y, u(T(x, y)), v(T(x, y)))\} \tag{1}\\
v(x)=\sup _{y \in D}\{g(x, y)+F(x, y, \alpha(u(T(x, y))), \alpha(v(T(x, y))))\}
\end{array}\right.
$$

appear in the study of dynamic programming (see [7]), where $x \in S$ and S is a state space, D is a decision space, $T: S \times D \rightarrow S$, $g: S \times D \rightarrow \mathbb{R}, \alpha: B(S) \rightarrow B(S)$ and $F: S \times D \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are given mappings.

https://daneshyari.com/en/article/4626386

Download Persian Version:
https://daneshyari.com/article/4626386

Daneshyari.com

[^0]: * Corresponding author. Tel.: +34 928458830.

 E-mail addresses: jharjani@dma.ulpgc.es (J. Harjani), jrocha@dma.ulpgc.es (J. Rocha), ksadaran@dma.ulpgc.es (K. Sadarangani).

