Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Generalized coupled fixed points and its application to a class of systems of functional equations arising in dynamic programming

J. Harjani, J. Rocha, K. Sadarangani*

Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, Las Palmas de Gran Canaria 35017, Spain

ARTICLE INFO

MSC: 47H10

Keywords: Coupled fixed point Functional equation Dnamic programming

ABSTRACT

In this paper, we introduce the definition of generalized coupled fixed point in the space of the bounded functions on a set *S* and we prove a result about the existence and uniqueness of such points. As an application of our result, we study the problem of existence and uniqueness of solutions for a class of systems of functional equations which appears in dynamic programming.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Banach contraction mapping principle is one of the pivotal results of analysis. Its significance lies in its vast applicability in a great number of branches of mathematics and other sciences.

Generalizations of the above principle have been objects of study in a lot of papers appearing in the literature. Particularly, one of these generalizations is due to Rhoades [1] and he uses weakly contractive mappings. Earlier to present the definition of this class of mappings, we introduce the class \mathcal{A} of functions $\varphi : [0, \infty] \rightarrow [0, \infty]$ which is nondecreasing and $\varphi(t) = 0$ if and only if t = 0. Examples of functions in the class \mathcal{A} are $\varphi(t) = \lambda t$ with $\lambda \in (0, 1)$, $\varphi(t) = \operatorname{arctgt}, \varphi(t) = \ln(1 + t)$ and $\varphi(t) = \frac{1}{1+t}$, among others.

Definition 1. Let (X, d) be a metric space and let $T: X \to X$ be a mapping. We say that T is weakly contractive if, for any $x, y \in X$,

 $d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)),$

where $\varphi \in \mathcal{A}$.

The following fixed point theorem which appears in [1] will be a crucial tool in our study.

Theorem 1 ([1]). Let (X, d) be a complete metric space and $T: X \rightarrow X$ a weakly contractive mapping. Then T has a unique fixed point.

Remark 1. In [1], the author assumes that $\lim_{t\to\infty} \varphi(t) = \infty$ and the continuity of φ , but a detailed analysis of the proof says us that these conditions are superfluous.

The main purpose of this paper is to introduce the definition of generalized coupled fixed point, to prove a result about the existence and uniqueness of these points and to apply the result to a problem which appears in dynamic programming. Our main tool in our study is Theorem 1.

This topic has been treated recently in some papers (see, for example [2–6]).

* Corresponding author. Tel.: +34 928458830. E-mail addresses: jharjani@dma.ulpgc.es (J. Harjani), jrocha@dma.ulpgc.es (J. Rocha), ksadaran@dma.ulpgc.es (K. Sadarangani).

http://dx.doi.org/10.1016/j.amc.2015.06.124 0096-3003/© 2015 Elsevier Inc. All rights reserved.

霐

2. Main result

In this section, we consider a nonempty set S and by B(S) we will denote the set of all bounded real functions defined on S. According to the ordinary addition of functions and scalar multiplication, B(S) is a real vectorial space on \mathbb{R} . In B(S), we consider the classical norm

$$||u|| = \sup_{x \in S} |u(x)|, \quad \text{for } u \in B(S),$$

and it is well known that $(B(S), \|.\|)$ is a Banach space.

Notice that the distance in B(S) is given by

 $d(u, v) = \sup\{|u(x) - v(x)| : x \in S\}, \text{ for } u, v \in B(S).$

Definition 2. Suppose that $G: B(S) \times B(S) \rightarrow B(S)$ and $\alpha: B(S) \rightarrow B(S)$ are two mappings. An element $(u, v) \in B(S) \times B(S)$ is called an α -coupled fixed point of *G* if G(u, v) = u and $G(\alpha(u), \alpha(v)) = v$.

Earlier to present our main result, we needed to introduce the class of functions \mathcal{B} given by those functions $\varphi: [0, \infty] \to [0, \infty]$ which are nondecreasing and such that $I - \varphi \in A$, where I denotes the identity mapping on $[0, \infty]$ and A is the class of functions introduced in Section 1.

Examples of functions belonging to \mathcal{B} are $\varphi(t) = arctgt$, $\varphi(t) = ln(1 + t)$, among others.

We are ready to present the main result of the paper which gives us sufficient condition for the existence and uniqueness of an α -coupled fixed point.

Theorem 2. Suppose that $G : B(S) \times B(S) \to B(S)$ and $\alpha : B(S) \to B(S)$ are two mappings. Assume that G satisfies $d(G(x, y), G(u, v)) \leq C(x, y)$ $\varphi(\max(d(x, u), d(y, v)))$, for any x, y, u, $v \in B(S)$, where $\varphi \in B$, and that the mapping α is non-expansive (this means that $d(\alpha(x), \alpha(y))$) $\leq d(x, y)$ for any $x, y \in B(S)$). Then G has a unique α -coupled fixed point.

Proof. Consider the cartesian product $B(S) \times B(S)$ endowed with the distance

d((x, y), (u, v)) = max(d(x, u), d(y, v)),

for any $(x, y), (u, v) \in B(S) \times B(S)$. It is known that $(B(S) \times B(S), \overline{d})$ is a complete metric space.

Now, we consider the mapping \overline{G} : $B(S) \times B(S) \to B(S) \times B(S)$ defined by

 $\bar{G}(x, y) = (G(x, y), G(\alpha(x), \alpha(y))).$

Next, we check that \bar{G} satisfies assumptions of Theorem 1, i.e., \bar{G} is a weakly contractive mapping on $B(S) \times B(S)$. In fact, taking into account our assumption, for any *x*, *y*, *u*, *v* \in *B*(*S*), we have

$$\begin{aligned} d(\bar{G}(x,y),\bar{G}(u,v)) &= d((G(x,y),G(\alpha(x),\alpha(y))),(G(u,v),G(\alpha(u),\alpha(v)))) \\ &= \max\{d(G(x,y),G(u,v)),d(G(\alpha(x),\alpha(y)),G(\alpha(u),\alpha(v)))\} \\ &\leq \max\{\varphi(\max(d(x,u),d(y,v))),\varphi(\max(d(\alpha(x),\alpha(u)),d(\alpha(y),\alpha(v))))\}. \end{aligned}$$

Since the mapping α is non-expansive, $max(d(\alpha(x), \alpha(u)), d(\alpha(y), \alpha(v))) \le max(d(x, u), d(y, v))$, and, since φ is nondecreasing, we infer

$$\bar{d}(\bar{G}(x,y),\bar{G}(u,v)) \le \varphi(\max(d(x,u),d(y,v))) \\ = \max(d(x,u),d(y,v)) - (\max(d(x,u),d(y,v)) - \varphi(\max(d(x,u),d(y,v)))).$$

Now, taking into account that $\varphi \in \mathcal{B}$ and, consequently, $I - \varphi \in \mathcal{A}$, from the last expression we obtain that \overline{G} is a weakly contractive mapping. By using Theorem 1, there exists a unique $(x_0, y_0) \in B(S) \times B(S)$ such that $\tilde{G}(x_0, y_0) = (x_0, y_0)$. This means that $G(x_0, y_0) = x_0$ and $G(\alpha(x_0), \alpha(y_0)) = y_0$ and, therefore, (x_0, y_0) is the unique α -coupled fixed point of *G*. This finishes the proof. \Box

Remark 2. Notice that the same argument used in the proof of Theorem 2 works when we consider as mapping \tilde{G} the one defined by $\tilde{G}(x, y) = (G(y, x), G(\alpha(y), \alpha(x)))$ or $\tilde{G}(x, y) = (G(x, y), G(\alpha(y), \alpha(x)))$, for example, and we obtain existence and uniqueness of other class of coupled fixed points.

3. Application to dynamic programming

The following types of systems of functional equations

$$\begin{cases} u(x) = \sup_{y \in D} \{g(x, y) + F(x, y, u(T(x, y)), v(T(x, y)))\} \\ v(x) = \sup_{y \in D} \{g(x, y) + F(x, y, \alpha(u(T(x, y))), \alpha(v(T(x, y))))\} \end{cases}$$
(1)

appear in the study of dynamic programming (see [7]), where $x \in S$ and S is a state space, D is a decision space, $T : S \times D \rightarrow S$, $g: S \times D \to \mathbb{R}, \alpha: B(S) \to B(S)$ and $F: S \times D \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are given mappings.

Download English Version:

https://daneshyari.com/en/article/4626386

Download Persian Version:

https://daneshyari.com/article/4626386

Daneshyari.com