Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A general approach to the construction of nonconforming finite elements on convex polytopes

^a Laboratoire d'Analyse et Modélisation des Systèmes et Aide à la Décision (LAMSAD), Université Hassan 1, Ecole Supérieure de Technologie, B.P. 218, Berrechid, Maroc

^b Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 4152, Université de Pau et des Pays de l'Adour, Pau 64000, France

^c Department of Mathematics, University of Erlangen–Nuremberg, Erlangen 91058, Germany

ARTICLE INFO

Keywords: Convex polytopes Crouzeix-Raviart finite element Nonconforming finite element Rotated Q1 element

ABSTRACT

This paper establishes a general approach for constructing a new class of nonconforming finite elements on arbitrary convex polytope. Our contributions generalize or complete several well-known nonconforming finite elements such as: the Crouzeix–Raviart triangle element, the Han parallelogram element, the nonconforming rotated parallelogram element of Rannacher and Turek, and several others.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The finite element method in a generalized form leads us to the following situation:

We have a convex polytope $K \subset \mathbb{R}^d$ with facets F_1, \ldots, F_n , where $n \ge d + 1$. With each facet F_j there is associated a linear functional L_j : $C(K) \to \mathbb{R}$. Furthermore, we have a finite dimensional subspace R(K) of C(K). We want that for each $f \in C(K)$, there exists a uniquely determined $g \in R(K)$ such that

$$L_i(g) = L_i(f)$$
 $(j = 1, ..., n)$

These are *n* conditions. Hence, if the functionals L_1, \ldots, L_n are "sufficiently different", we have to choose R(K) as an *n*-dimensional space.

If the polytope K is a non-degenerate simplex, then n = d + 1. In this case, it is natural and reasonable to choose R(K) as the space

$$\mathcal{P}_1 := \text{span}\{1, x_1, \dots, x_d\}$$

of affine functions on \mathbb{R}^d . When n > d + 1, we want to enrich the space \mathcal{P}_1 and choose R(K) as an extension of \mathcal{P}_1 , that is,

$$R(K) := \operatorname{span}\{1, x_1, \dots, x_d, f_1, \dots, f_{n-d-1}\}$$
(3)

with appropriate functions $f_1, \ldots, f_{n-d-1} \in C(K)$. This raises the question as to what are *sufficiently different* functionals L_1, \ldots, L_n and *appropriate* enrichment functions f_1, \ldots, f_{n-d-1} .

http://dx.doi.org/10.1016/j.amc.2015.06.128 0096-3003/© 2015 Elsevier Inc. All rights reserved.

癯

(2)

^{*} Corresponding author. Tel.: +33 559674418.

E-mail addresses: achchab@yahoo.fr (B. Achchab), Khalidbouihat@yahoo.fr (K. Bouihat), allal.guessab@univ-pau.fr (A. Guessab), schmeisser@mi.uni-erlangen.de (G. Schmeisser).

We shall proceed as follows. In the next section, we fix our notation. In Section 3, we introduce a separation property which guarantees us that the functionals L_j are sufficiently different for the quasi-interpolation (1). We characterize this separation property by means of linear algebra and study it for some natural choices of L_1, \ldots, L_n .

The main result follows in Section 4, where we characterize all functions f_1, \ldots, f_{n-d-1} that are admissible in (3) when the functionals L_1, \ldots, L_n satisfy the separation property.

In Section 5, we specialize *K* to an orthogonal parallelepiped and make the previous results more concrete. For such polytopes, the extension of \mathcal{P}_1 to R(K) has often been achieved by adding quadratic functions such as $f_i(\mathbf{x}) = x_i^2$ or $f_i(\mathbf{x}) = x_i^2 - x_{i+1}^2$; see [1–9,11–17]. More generally, we study if f_1, \ldots, f_{n-d-1} in (3) can be generated from one single function $f : [0, 1] \rightarrow \mathbb{R}$.

2. Notation

When *d* is an integer greater than 1, we denote the elements of \mathbb{R}^d by bold-faced letters. The corresponding normal letter with a subscript *i* is used for specifying the *i*th component. When we interpret $\mathbf{x} \in \mathbb{R}^d$ as a vector, it should be a column vector or, equivalently, the transpose of a row vector. Thus, $\mathbf{x} = (x_1, \dots, x_d)^\top$. By $\langle \cdot, \cdot \rangle$, we denote the standard inner product and by $\| \cdot \|$ the euclidean norm. Other norms are specified by attaching a subscript to the norm symbol.

For a connected set $K \subset \mathbb{R}^d$, we denote by C(K) the linear space comprising all continuous functions on K. The subspace of affine functions is denoted as in (2).

When $L : C(K) \to \mathbb{R}$ is a functional and $\mathbf{f} = (f_1, \dots, f_k)^\top$ for $f_1, \dots, f_k \in C(K)$, then we define

$$L(\boldsymbol{f}) := \begin{pmatrix} L(f_1) \\ \vdots \\ L(f_k) \end{pmatrix}.$$

We use d**x** for integration in \mathbb{R}^d and d σ for integration over a (d - 1)-dimensional surface in \mathbb{R}^d . The measure of a measurable set *F* will be denoted by |*F*|. From the context it should be clear in which dimension the measure is taken.

If *F* is a facet of a convex polytope in \mathbb{R}^d , then

$$\boldsymbol{x}_* := \frac{1}{|F|} \int_F \boldsymbol{x} \, \mathrm{d}\sigma \tag{4}$$

is the *center of gravity* of *F*. More generally, if $L : C(K) \to \mathbb{R}$ is a linear functional and $L(1) \neq 0$, then

$$\boldsymbol{x}_* := \frac{L(\boldsymbol{x})}{L(1)} \tag{5}$$

is the center of gravity of L.

3. Separating functionals

Let $K \subset \mathbb{R}^d$ be a non-degenerate convex polytope with facets F_1, \ldots, F_n , where $n \ge d + 1$. Suppose that with each facet F_j , there is associated a linear functional $L_j : C(K) \to \mathbb{R}$ such that $L_j(1) = 1$. Now we introduce the announced separation property.

Definition 3.1. We say that the functionals $L_1, ..., L_n$ separate affine functions if for any two different affine functions p and q we have $L_i(p) \neq L_i(q)$ for at least one $j \in \{1, ..., n\}$.

Remark 3.2. As a consequence of their linearity, the functionals L_1, \ldots, L_n do *not* separate affine functions if and only if there exists an affine function $p \neq 0$ such that $L_j(p) = 0$ for $j = 1, \ldots, n$.

Next we give two characterizations for the separation property. Denote by x_i^j the center of gravity of L_i and define

$$\boldsymbol{w}^{j} := \begin{pmatrix} 1 \\ \boldsymbol{x}^{j}_{*} \end{pmatrix} \in \mathbb{R}^{d+1} \quad (j = 1, \dots, n).$$
(6)

These vectors will play a particularly important role in our consideration. Then, the following characterizations hold.

Proposition 3.3. The following statements are equivalent:

- (i) The functionals L_1, \ldots, L_n separate affine functions.
- (ii) The centers of gravity of L_1, \ldots, L_n are not contained in a hyperplane of \mathbb{R}^d .
- (iii) For the vectors (6) we have span $\{\mathbf{w}^1, \ldots, \mathbf{w}^n\} = \mathbb{R}^{d+1}$.

Proof. First we show that (i) and (iii) are equivalent. Let

$$V := \operatorname{span} \left\{ \boldsymbol{w}^1, \dots, \boldsymbol{w}^n \right\}.$$

Download English Version:

https://daneshyari.com/en/article/4626393

Download Persian Version:

https://daneshyari.com/article/4626393

Daneshyari.com