A general approach to the construction of nonconforming finite elements on convex polytopes

${ }^{\text {a }}$ Laboratoire d'Analyse et Modélisation des Systèmes et Aide à la Décision (LAMSAD), Université Hassan 1, Ecole Supérieure de Technologie, B.P. 218, Berrechid, Maroc
${ }^{\mathrm{b}}$ Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 4152, Université de Pau et des Pays de l'Adour, Pau 64000, France
${ }^{\text {c }}$ Department of Mathematics, University of Erlangen-Nuremberg, Erlangen 91058, Germany

ARTICLE IN FO

Keywords:

Convex polytopes
Crouzeix-Raviart finite element
Nonconforming finite element
Rotated Q_{1} element

Abstract

This paper establishes a general approach for constructing a new class of nonconforming finite elements on arbitrary convex polytope. Our contributions generalize or complete several wellknown nonconforming finite elements such as: the Crouzeix-Raviart triangle element, the Han parallelogram element, the nonconforming rotated parallelogram element of Rannacher and Turek, and several others.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The finite element method in a generalized form leads us to the following situation:
We have a convex polytope $K \subset \mathbb{R}^{d}$ with facets F_{1}, \ldots, F_{n}, where $n \geq d+1$. With each facet F_{j} there is associated a linear functional $L_{j}: C(K) \rightarrow \mathbb{R}$. Furthermore, we have a finite dimensional subspace $R(K)$ of $C(K)$. We want that for each $f \in C(K)$, there exists a uniquely determined $g \in R(K)$ such that

$$
\begin{equation*}
L_{j}(g)=L_{j}(f) \quad(j=1, \ldots, n) \tag{1}
\end{equation*}
$$

These are n conditions. Hence, if the functionals L_{1}, \ldots, L_{n} are "sufficiently different", we have to choose $R(K)$ as an n-dimensional space.

If the polytope K is a non-degenerate simplex, then $n=d+1$. In this case, it is natural and reasonable to choose $R(K)$ as the space

$$
\begin{equation*}
\mathcal{P}_{1}:=\operatorname{span}\left\{1, x_{1}, \ldots, x_{d}\right\} \tag{2}
\end{equation*}
$$

of affine functions on \mathbb{R}^{d}. When $n>d+1$, we want to enrich the space \mathcal{P}_{1} and choose $R(K)$ as an extension of \mathcal{P}_{1}, that is,

$$
\begin{equation*}
R(K):=\operatorname{span}\left\{1, x_{1}, \ldots, x_{d}, f_{1}, \ldots, f_{n-d-1}\right\} \tag{3}
\end{equation*}
$$

with appropriate functions $f_{1}, \ldots, f_{n-d-1} \in C(K)$. This raises the question as to what are sufficiently different functionals L_{1}, \ldots, L_{n} and appropriate enrichment functions f_{1}, \ldots, f_{n-d-1}.

[^0]We shall proceed as follows. In the next section, we fix our notation. In Section 3, we introduce a separation property which guarantees us that the functionals L_{j} are sufficiently different for the quasi-interpolation (1). We characterize this separation property by means of linear algebra and study it for some natural choices of L_{1}, \ldots, L_{n}.

The main result follows in Section 4, where we characterize all functions f_{1}, \ldots, f_{n-d-1} that are admissible in (3) when the functionals L_{1}, \ldots, L_{n} satisfy the separation property.

In Section 5, we specialize K to an orthogonal parallelepiped and make the previous results more concrete. For such polytopes, the extension of \mathcal{P}_{1} to $R(K)$ has often been achieved by adding quadratic functions such as $f_{i}(\boldsymbol{x})=x_{i}^{2}$ or $f_{i}(\boldsymbol{x})=x_{i}^{2}-x_{i+1}^{2}$; see [1-9,11-17]. More generally, we study if f_{1}, \ldots, f_{n-d-1} in (3) can be generated from one single function $f:[0,1] \rightarrow \mathbb{R}$.

2. Notation

When d is an integer greater than 1 , we denote the elements of \mathbb{R}^{d} by bold-faced letters. The corresponding normal letter with a subscript i is used for specifying the i th component. When we interpret $\boldsymbol{x} \in \mathbb{R}^{d}$ as a vector, it should be a column vector or, equivalently, the transpose of a row vector. Thus, $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$. By $\langle\cdot, \cdot\rangle$, we denote the standard inner product and by $\|$. $\|$ the euclidean norm. Other norms are specified by attaching a subscript to the norm symbol.

For a connected set $K \subset \mathbb{R}^{d}$, we denote by $C(K)$ the linear space comprising all continuous functions on K. The subspace of affine functions is denoted as in (2).

When $L: C(K) \rightarrow \mathbb{R}$ is a functional and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{k}\right)^{\top}$ for $f_{1}, \ldots, f_{k} \in C(K)$, then we define

$$
L(\boldsymbol{f}):=\left(\begin{array}{c}
L\left(f_{1}\right) \\
\vdots \\
L\left(f_{k}\right)
\end{array}\right)
$$

We use $\mathrm{d} \boldsymbol{x}$ for integration in \mathbb{R}^{d} and $\mathrm{d} \sigma$ for integration over a $(d-1)$-dimensional surface in \mathbb{R}^{d}. The measure of a measurable set F will be denoted by $|F|$. From the context it should be clear in which dimension the measure is taken.

If F is a facet of a convex polytope in \mathbb{R}^{d}, then

$$
\begin{equation*}
\boldsymbol{x}_{*}:=\frac{1}{|F|} \int_{F} \boldsymbol{x} \mathrm{~d} \sigma \tag{4}
\end{equation*}
$$

is the center of gravity of F. More generally, if $L: C(K) \rightarrow \mathbb{R}$ is a linear functional and $L(1) \neq 0$, then

$$
\begin{equation*}
\boldsymbol{x}_{*}:=\frac{L(\boldsymbol{x})}{L(1)} \tag{5}
\end{equation*}
$$

is the center of gravity of L.

3. Separating functionals

Let $K \subset \mathbb{R}^{d}$ be a non-degenerate convex polytope with facets F_{1}, \ldots, F_{n}, where $n \geq d+1$. Suppose that with each facet F_{j}, there is associated a linear functional $L_{j}: C(K) \rightarrow \mathbb{R}$ such that $L_{j}(1)=1$. Now we introduce the announced separation property.

Definition 3.1. We say that the functionals L_{1}, \ldots, L_{n} separate affine functions if for any two different affine functions p and q we have $L_{j}(p) \neq L_{j}(q)$ for at least one $j \in\{1, \ldots, n\}$.

Remark 3.2. As a consequence of their linearity, the functionals L_{1}, \ldots, L_{n} do not separate affine functions if and only if there exists an affine function $p \neq 0$ such that $L_{j}(p)=0$ for $j=1, \ldots, n$.

Next we give two characterizations for the separation property. Denote by \boldsymbol{x}_{*}^{j} the center of gravity of L_{j} and define

$$
\begin{equation*}
\boldsymbol{w}^{j}:=\binom{1}{\boldsymbol{x}_{*}^{j}} \in \mathbb{R}^{d+1} \quad(j=1, \ldots, n) \tag{6}
\end{equation*}
$$

These vectors will play a particularly important role in our consideration.
Then, the following characterizations hold.
Proposition 3.3. The following statements are equivalent:
(i) The functionals L_{1}, \ldots, L_{n} separate affine functions.
(ii) The centers of gravity of L_{1}, \ldots, L_{n} are not contained in a hyperplane of \mathbb{R}^{d}.
(iii) For the vectors (6) we have span $\left\{\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{n}\right\}=\mathbb{R}^{d+1}$.

Proof. First we show that (i) and (iii) are equivalent. Let

$$
V:=\operatorname{span}\left\{\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{n}\right\} .
$$

https://daneshyari.com/en/article/4626393

Download Persian Version:
https://daneshyari.com/article/4626393

Daneshyari.com

[^0]: * Corresponding author. Tel.: +33 559674418.

 E-mail addresses: achchab@yahoo.fr (B. Achchab), Khalidbouihat@yahoo.fr (K. Bouihat), allal.guessab@univ-pau.fr (A. Guessab), schmeisser@mi.uni-erlangen.de (G. Schmeisser).

