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a b s t r a c t

In this paper, the problems of finite-time globally asymptotical stability in probability (FGSP)

and finite-time stochastic input-to-state stability (FSISS) for switched stochastic nonlinear

(SSNL) systems are investigated. To solve these problems elegantly, some new definitions on

FGSP and FSISS are presented in the form of generalized KL (GKL) function, and some lem-

mas about GKL functions and their properties are proved. Based on that, some sufficient con-

ditions are provided firstly for nonswitched stochastic nonlinear (nSSNL) systems, which will

make the corresponding study on SSNL systems easier. Then, overcoming the difficulties com-

ing with the appearance of switching, some sufficient conditions on FGSP and FSISS are given

for SSNL systems. Moreover, based on the concept of average dwell-time, a sufficient condi-

tion for FSISS of SSNL systems is also provided. Finally, some simulation examples are given to

demonstrate the effectiveness of our results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since the performance of a real control system is affected more or less by uncertainties such as unmodelled dynamics, param-

eter perturbations, exogenous disturbances, measurement errors etc., the research on robustness of control systems do always

have a vital status in the development of control theory and technology. Aiming at robustness analysis of nonlinear control sys-

tems, a new method from the point of view of input-to-state stability (ISS), input-to-output stability (IOS) and integral input-to-

state stability (iISS) are developed and a series of fundamental results centralizing on the theory of ISS-, IOS-Lyapunov functions

are obtained by many scholars, such as Sontag, Wang and Lin, etc. [1], [21], [13], [14], [23], [24], [25], [26], [16], [12]. ISS focuses

on the design of smooth controllers to tackle stabilization of various classes of nonlinear systems or their robust and adaptive

control in the presence of various uncertainties arising from control engineering applications.

In another active research area, non-smooth (including discontinuous and continuous but not Lipschitz continuous) control

approaches have drawn increasing attention in nonlinear control system design. One of the main benefits of the non-smooth

finite-time control strategy is that it can force a control system to reach a desirable target in finite time. This approach was first

studied in the literature of optimal control. In recent years, finite-time ISS and its applications to finite-time controller design

have been considered in many literatures [7], [8], [9], [27]. On the other hand, there are many concerns on stochastic systems for
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the study on stability, controller design, filtering, etc. ([15], [17], [18], [29], etc). But, for the finite-time ISS of stochastic systems,

it has not been studied.

From the definition of finite-time input-to-state stability (FISS), it can be found that, if the input u = 0, an FISS system is

necessarily finite-time globally asymptotically stable (GAS). So, the study of finite-time globally asymptotical stability (GAS) is

very helpful to the study of FISS. In [2], [3] and [28], the definition of finite-time globally asymptotical stability in probability

(FGSP) was provided and some criteria have been given. But, in [2], [3] and [28], the definition of FGSP was defined in the form

of stability in probability plus attractivity in probability. To study the FSISS of stochastic systems, a definition of FGSP in the form

of GKL function (|x| ≤ β(|x0|, t), where x is the system state and x0 is the initial value and β is a GKL function) is needed. The

definition of this form is much more elegant and easier to work with.

In this paper, the FGSP and FSISS will be considered for nSSNL and SSNL systems, and the definitions of FGSP and FSISS are

both in the form of GKL function. Firstly, some lemmas are provided to make the proof of our main results easier. Then, for

nSSNL systems, the criteria on FGSP and FSISS are provided. To study the FSISS of SSNL systems, the pathwise uniqueness of

SSNL systems is considered, and then some criteria on FGSP and FSISS are provided. Moreover, based on the average dwell-

time method, a sufficient condition for FSISS of SSNL systems is given. To illustrate the effectiveness of our main results, some

simulation examples will be given at the last.

The remainder of this paper is organized as following: Section 2 provides some notations and introduces the definitions of

FGSP, FSISS and FSISS-Lyapunov function. Section 3 investigates the FGSP and FSISS property of nSSNL systems. In Section 4, after

the pathwise uniqueness of SSNL systems be considered, some criteria on FGSP and FSISS are provided. In Section 5, based on

the concept of average dwell time, a sufficient condition for FSISS of SSNL systems is provided. In Section 6, some simulation

examples are provided to illustrate the results. Section 7 includes some concluding remarks.

2. Notations and preliminary results

Throughout this paper, R+ denotes the set of all nonnegative real numbers; R
n and R

n×m denote, respectively, n-dimensional

real space and n × m dimensional real matrix space. For vector x ∈ R
n, |x| denotes the Euclidean norm |x| = (

∑n
i=1 x2

i
)1/2. All

the vectors are column vectors unless otherwise specified. The transpose of vectors and matrices are denoted by superscript

T. C([a, b]; R
n) denotes continuous R

n-valued function space defined on [a, b]; Ci denotes all the ith continuous differential

functions; Ci,k denotes all the functions with ith continuously differentiable first component and kth continuously differentiable

second component. E(x) denotes the expectation of stochastic variable x. The composition of two functions ϕ: A → B and ψ : B →
C is denoted by ψ◦ϕ: A → C.

A function ϕ(u) is said to belong to the class K if ϕ ∈ C(R+, R+), ϕ(0) = 0 and ϕ(u) is strictly increasing in u. K∞ is the subset

of K functions that are unbounded. A function β : R+ × R+ → R+ is of class KL, if β( ·, t) is of class K in the first argument for

each fixed t ≥ 0 and β(s, t) decreases to 0 as t → +∞ for each fixed s ≥ 0.

A function h : R+ → R+ is said to belong to the class generalized K (GK) if it is continuous with h(0) = 0, and satisfies{
h(r1) > h(r2), if h(r1) 	= 0;
h(r1) = h(r2) = 0, if h(r1) = 0,

∀ r1 > r2. (1)

Note that a class GK function is a (conventional) class K function, which is defined as a continuous and strictly increasing function

with h(0) = 0 because a strictly increasing function satisfies (1). A function β : R+ × R+ → R+ is of class generalized KL function

(GKL function) if, for each fixed t ≥ 0, the function β(s, t) is a generalized K-function, and for each fixed s ≥ 0 it decreases to zero

as t → T for some T ≤ ∞.

Consider the following n-dimensional stochastic nonlinear (SNL) system

dx = f (t, x, u)dt + g(t, x, u)dw, t ≥ t0, (2)

where x ∈ R
n and u ∈ Lm∞ are system state and input, respectively; Lm∞ denotes the set of all the measurable and locally essentially

bounded input u ∈ R
m on [t0, ∞) with norm

‖u‖ = sup
t≥t0

inf
A⊂�,P(A)=0

sup{|u(t,ω))| : ω ∈ �\A}. (3)

w(t) is an r-dimensional Brownian motion defined on the complete probability space (�,F , {Ft}t≥t0
, P), with � being a sample

space, F being a σ -field, {Ft}t≥t0
being a filtration and P being a probability measure. f : [t0,∞) × R

n × R
m → R

n, g : [t0, ∞) ×
R

n × R
m → R

n×r are continuous and satisfies f( ·, 0, 0) ≡ 0, g( ·, 0, 0) ≡ 0. Moreover, system (2) is assumed to has a pathwise

unique strong solution[19], denoted by x(t, t0, x0), t0 ≤ t < +∞, for any given x0 ∈ R
n.

For convenience, we denote system (2) with input u = 0 as follows

dx = f (t, x)dt + g(t, x)dw, t ≥ t0, (4)

and introduce some corresponding definitions on FGSP and FSISS.

Definition 2.1. (Stochastic settling time function). For system (4), define T0(t0, x0, w) = inf{T ≥ 0 : x(t, t0, x0) = 0, ∀ t ≥ t0 + T},
which is called the stochastic settling time function. Especially, T0(t0, x0, w) =: +∞ if x(t, t0, x0) 	= 0, ∀ t ≥ t0.
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