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a b s t r a c t

This paper extends the waveform relaxation (WR) method to neutral stochastic functional

differential equations. The linear convergence theory of the continuous time WR method is

established in the mean square sense when the coefficients of stochastic differential equation

systems satisfy the Lipschitz condition and the contractive mapping. The discrete time WR

method based on the Euler scheme, which is used in an actual implementation, was also

studied. It turns out that the sequence produced by this method converges linearly to the

Euler approximate solution which is convergent. In addition, we prove that the preceding

methods are convergent superlinearly if the neutral term does not been split. Finally, the

theory is applied to a one-dimensional model problem and checked against results obtained

by numerical experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The waveform relaxation (WR) method, also called dynamic iteration or Picard–Lindelöf iteration, is a highly parallel iterative

method for numerically solving large-scale systems of ordinary differential equations (ODEs) and first proposed by Lelarasmee

et al. [16] for analyzing large-scale integrated circuit. The approach is in view of the fact that there is a weak coupling between

certain blocks of elements of the circuit, then the systems of ODEs can be decoupled. The different decoupled subsystems are

solved independently of each other on a parallel computer in parallel, which is one of the major advantages of the WR method.

Very often the circuit consists of fast and slow components and the fast components force one to use implicit integration

methods. Therefore one must solve an m-dimensional nonlinear system of equations at each timepoint before advancing to the

next timepoint. In the quest for improving the efficiency of numerical simulation, it was proposed to first use some continuous-

time iterations (Picard–Lindelöf iterations) to “decouple” the system and then discretize the resulting subsystems. All these facts

have made the WR techniques competitive with the classical approaches to the numerical solution of differential equations

based, for example, on discrete variable methods such as Runge–Kutta, linear multistep or predictor–corrector method (see

also [11]).

The WR method has been applied successfully to the linear problems. Nevanlinna [22] has proved superlinear convergence of

dynamic iterations for linear differential systems on finite time interval. Jansen and Vandewalle [10] deal with the acceleration

of the standard WR method by successive overrelaxation techniques. Sand and Burrage [24] focus on the approach to the
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parallelism and present a highly parallel method. Nichols [23] first proposed the two-stage iterative method in 1973, then it

has been further studied by other authors (see [8], [26] and [30]). The WR method has been also applied extensively to more

general, time-dependent coefficient problems and to nonlinear problems. It has been extended to, for example, differential-

algebraic systems of neutral type [11], integro-algebraic systems and differential-algebraic systems (see [1] and [13]), systems of

second kind Volterra integral equations [3], stiff nonlinear ordinary differential equations [9], functional-differential equations

[31], neutral delay differential equations [27], functional differential equations of neutral type [12], Volterra type systems

of neutral differential-functional equations [29]. In these references, the error estimates are derived, which imply the linear

convergence of WR methods. In particular, [3] and [29] obtain the conditions of superlinear convergence for some special

cases.

Stochastic differential equations (SDEs) are increasingly used nowadays to model real-world phenomena by including ef-

fects of random perturbations on the time evolution of the state of the system (see [7] and [18]). Most of the SDEs can-

not be solved explicitly and many attempts have been made to develop the efficient numerical methods (see [14] and

[20]). In recent years, there has been growing interesting in extending some important theorems to more general problems.

For example, [2] and [17] extend the convergence theory of numerical approximate solution of stochastic ordinary differ-

ential equations (SODEs) to stochastic delay differential equations (SDDEs), [19] extends that of SDDEs to stochastic func-

tional differential equations (SFDEs) and [28] extends that of SFDEs to neutral stochastic functional differential equations

(NSFDEs).

The WR method to SDEs was first proposed by Schurz and Schneider [25] in which Lp convergence of WR methods for

numerical solving of systems of SODEs is studied and the sufficient conditions for the linear Lp convergence of the method are

given. However, the conditions do not hold for some linear systems even and depend on the spectral radius of the large matrixes,

which is obtained hardly. [4] and [5] extend the WR methods to SDDEs, in which the convergent conditions are replaced by the

Lipschitz condition and the superlinear convergence was studied. However, the superlinear convergence was obtained only for

the special splitting functions and a weak convergence criterion. To our knowledge, little is as yet known about the WR methods

for SFDEs and NSFDEs although it may be necessary to extend WR methods to these equations. This paper will fill the blank.

In this paper, We will prove the continuous time WR method with quite general splitting functions for NSFDEs is convergent

in mean square sense under the Lipschitz conditions and the contractive mapping. The convergence theory of the discrete time

WR methods, which is used in an actual implementation, will be also studied.

2. Results

Throughout this paper, we let (�,F , {Ft}t�0, P) be a complete probability space with a filtration {Ft}t�0 satisfying the

usual conditions. Let W = {W(t), t � 0}, W(t) = (W1
t , . . . , Wd

t )T , be a d-dimensional Brownian motion defined on the probability

space. Let | · | denote the Euclidean vector norm as well as the matrix trace norm. Let τ > 0 and C([−τ , 0]; R
r) denote the

family of continuous function ϕ from [−τ , 0] to R
r with the norm ‖ϕ‖ = sup−τ�θ�0 |ϕ(θ)|. Let B(C([−τ , 0]; R

r)) denote Borel

σ -algebra of C([−τ , 0]; R
r) and L2

F0
([−τ , 0]; R

r) denote the family of (F0,B(C([−τ , 0], R
r)))-measurable C([−τ , 0]; R

r)-valued

random variables ξ such that E‖ξ‖2 < �(see [21]).

In this paper, we consider the following SDEs

d[X(t)− u(Xt)] = f (t, Xt)dt + g(t, Xt)dW(t), (2.1)

on t � [0, T] with initial data X0 = ξ . Such equations depend on past and present values but that involve derivatives with delays

as well as the function itself, so called neutral stochastic functional differential equation. Here

u : C([−τ , 0]; R
r) → R

r, f : [0, T] × C([−τ , 0]; R
r) → R

r,

g : [0, T] × C([−τ , 0]; R
r) → R

r×d

are all continuous functionals. Moreover, Xt = {X(t + θ ): −τ � θ � 0}, which is regarded as a C([−τ , 0]; R
r)-valued stochastic

process, and ξ = (ξ(t))−τ�t�0 ∈ L2
F0

([−τ , 0]; R
r). An Ft-adapted process X(t), −τ � t � T (let Ft = F0 for − τ � t � 0), is said to

be a solution of equation (2.1) if it satisfies the initial condition and, moreover, for every t � [0, T],

X(t)− u(Xt) = X(0)− u(X0)+
∫ t

0

f (s, Xs)ds +
∫ t

0

g(s, Xs)dW(s).

Let U : C([−τ , 0]; R
r)× C([−τ , 0]; R

r) → R
r, F : [0, T] × C([−τ , 0]; R

r)× C([−τ , 0]; R
r) → R

r and G : [0, T] × C([−τ , 0]; R
r)×

C([−τ , 0]; R
r) → R

r×d denote the splitting functions for Eq. (2.1), that is

u(Xt) = U(Xt, Xt), f (t, Xt) = F(t, Xt, Xt), g(t, Xt) = G(t, Xt, Xt).

The splitting functions are chosen to attempt to decouple systems (2.1) into easily solvable independent subsystems, which may

then be solved separately.

In this paper we impose the following hypotheses:

Assumption 2.1. (Lipschitz conditions) There are some constants K1, K2, K̄1, K̄2 > 0 such that

|F(t, ϕ1, ϕ2)− F(t,ψ1,ψ2)|2 � K1||ϕ1 − ψ1||2 + K2||ϕ2 − ψ2||2 (2.2)
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