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a b s t r a c t

Most fractional differential equations do not have closed form solutions. Development of

effective numerical techniques has been an interesting research topic for decades. In this con-

text, this paper proposes a numerical technique, for solving linear and nonlinear multi-order

fractional differential equations, based on newly computed generalized triangular function op-

erational matrices for Riemann–Liouville fractional order integral. The orthogonal triangular

functions are evolved from a simple dissection of piecewise constant orthogonal block pulse

functions. Theoretical error analysis is performed to estimate the upper bound of absolute

error between the exact Riemann–Liouville fractional order integral and its approximation

in the triangular functions domain. Numerical examples are considered for investigating the

applicability and effectiveness of proposed technique to solve multi-order fractional differen-

tial equations. The results encourage the use of orthogonal TFs for analysis of real processes

exhibiting fractional dynamics.

© 2015 Published by Elsevier Inc.

1. Introduction

Fractional calculus is the theory of differentiation and integration of arbitrary order and was originated at the time of

development of the classical calculus, hence, it is as old as classical calculus but yet a fresh topic [1]. The reason why fractional

calculus has been the focus of numerous pure mathematicians and applied scientists in diverse realms of science and technology

is the ability of fractional derivative to explain memory effects and hereditary properties of real world processes [2–5]. Due

to local nature, the integer order derivative could not describe those concepts. In order to comprehend the inherent fractional

order description of fractional order models, the corresponding fractional differential equations (FDEs) need to be solved. In this

regard, analytical techniques such as Laplace transform method, fractional Green’s function, Mellin transform method, power

series method, etc. are already developed [6]. In reality, almost all processes are nonlinear and complex in nature, therefore,

these techniques are not useful for those models. For analysis of such complicated nonlinear fractional processes, efficient

numerical techniques like Predictor–Corrector method, generalized Euler’s method, etc. and semi analytic-numeric techniques;

Adomian decomposition method, variational iteration method, fractional differential transform method, homotopy analysis

method, homotopy perturbation method, etc. can be used [7–13].

The orthogonal triangular function (TF) sets developed by Deb et al. [14] are a complementary pair of piecewise linear

polynomial function sets evolved from a simple dissection of block pulse function (BPF) set [14,15]. The authors have derived a
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complementary pair of operational matrices for first order integration in the TF domain and demonstrated that the TF domain

technique for dynamical systems analysis is computationally more effective than the BPF domain technique. Besides system

analysis, the orthogonal TFs also find applications in system identification, optimal controller design and numerical analysis of

classical integral and differential equations [16–20]. Those successful applications have made us strongly believe that TFs having

enough potential to be applicable in fractional order systems. To the best of our knowledge, there is no literature until date in

fractional calculus that reported the use of orthogonal TFs for solving FDEs. These facts motivated us to extend the application of

orthogonal TFs to solve multi-order FDEs of the form

Dαy(t) =
r∑

k=1

bkDβk y(t)+ cF(y(t))+ f (t), n − 1 < α ≤ n, t ∈ [0, T] (1)

with initial conditions; y(s)(0) = as, s = 0, 1, 2, . . . , n − 1. Here Dαy(t) is the Caputo fractional derivative of order α satisfying the

relation α > β1 > β2 · · ·βr , bk and c are real constants, f(t) is known function and F(y(t)) can be linear or nonlinear.

To accomplish our goal, we have proposed the generalized triangular function operational matrices for estimating the frac-

tional order integral in the TF domain and based on this result, we have proposed a numerical technique for finding approximate

numerical solutions of Eq. (1). The rest of the paper is prepared as follows. Useful definitions and a few properties of fractional

calculus are provided in Section 2. Generation of complementary pair of TF sets from BPF set is discussed in Section 3. Section 4

presents the basic properties of orthogonal TF sets. The procedure of estimating classical and fractional integration in TF domain

is explained in Section 5. An upper bound of absolute error between the exact α−order Riemann–Liouville fractional integral

and its TF estimate is computed in Section 6. In Section 7, a numerical technique based on the results of Section 5 is proposed.

Section 8 implements the proposed technique on illustrative examples. Finally, the paper is concluded in Section 9.

2. Basic operators and properties of fractional calculus

This section provides two widely utilized definitions and some operational properties of fractional calculus [6].

Definition 2.1. A real function f (t), t > 0 is said to be in the space Cμ,μ ∈ R if there exists a real number p(>μ), such that

f (t) = tpf1(t), where f1(t) ∈ C[0,∞), and it is said to be in the space Cn
μ if and only if f (n) ∈ Cμ, n ∈ N.

Definition 2.2. The Riemann–Liouville fractional integral of order α(> 0) of function f (t) ∈ Cμ,μ > −1 is defined as

Jα f (t) = 1

�(α)

∫ t

0

(t − τ)α−1f (τ )dτ , t > 0 (2)

Definition 2.3. The Riemann–Liouville fractional derivative is

0Dα
t f (t) = DnJn−α f (t) = 1

�(n − α)

dn

dtn

∫ t

0

(t − τ)n−α−1f (τ )dτ , t > 0, n − 1 < α ≤ n, n ∈ N (3)

Definition 2.4. The fractional derivative of function f (t) in Caputo sense is defined as

0Dα
∗ f (t) = Jn−α f (n)(t) = 1

�(n − α)

∫ t

0

(t − τ)n−α−1f (n)(τ )dτ , t > 0 (4)

The following are the semi group and commutative properties of fractional integral and fractional derivative.

For f (t) ∈ Cμ, μ > −1 and α,β > 0, m, n ∈ N

Jα Jβ f (t) = Jβ Jα f (t) = Jα+β f (t) (5)

C
0Dα

t

(
0Dm

t f (t)
) = 0Dm

t

(
C
0Dα

t f (t)
)

= 0Dα+m
t f (t), f (s)(0) = 0, s = n, n + 1, . . . , m (6)

0Dα
t

(
0Dm

t f (t)
) = 0Dm

t

(
0Dα

t f (t)
) = 0Dα+m

t f (t), f (s)(0) = 0, s = 0, 1, . . . , m (7)

JαDα f (t) = f (t)−
n−1∑
k=0

f (k)(0)
tk

k!
(8)

3. Triangular functions

In this section, firstly, we review block pulse functions in brief and then we introduce the method of dissecting the block

pulse function set to formulate a complementary pair of orthogonal triangular function sets.
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