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1. Introduction

Almost four decades ago, Srivastava [1] introduced and investigated the following general family of polynomials:
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where {A, ko is a suitably bounded double sequence of real or complex numbers, [a] denotes the greatest integer a € R, and
(A)y denotes the Pochhammer symbol defined by

Oy = FA4+v) [ARr+1)...a+n-1) (v=neN;AeC),
YTy |1 (v=0;1eC\{0}),
N and C being, as usual, the set of positive integers and the set of complex numbers, respectively. Moreover, it is understood

conventionally that (0)g = 1.
This last family of polynomials and their variants as
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were widely studied by Gonzalez et al. [2] and recently by Lin et al. [3] (see also Lin et al. [4,5]). It is easy to see that
Sho@ =S @.
Recently, Altin et al. [6] investigated the following family of bivariate polynomials:
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which family contains as special cases the Lagrange-Hermite polynomials, the Lagrange polynomials and the Hermite-Kampé
de Fériet polynomials. The reader should read [6-11] for further details.
It is easily observed by comparing definitions (1.1) and (1.2) that
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This shows the fact that the two-variable polynomials S?’N (x, y) are essentially the same as the one-variable polynomials S’,;{ m@).
In the present investigation, we consider the following general family of polynomials:
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where (and throughout this paper) (K;) stands for the array of r parameters K, . . ., K, with similar interpretations for (Lp), (Ts),

(Mg), (Ar), (@r), (ap); (1s), (¢bs) and (Bq).
This general family of polynomials contains, as special cases, several other families of polynomials. For example, the following

relationships hold between the polynomials E’:((gr))&‘;)) (z; L), (@r), (orp); (is), (@s), (Bq)) and some simpler class of polynomials

studied in [3,4,12-14]:
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The main object of this paper is to obtain a multiple integral representations associated with the polynomials defined by
(1.6). These multiple integral representations generalize and unify the numerous results given recently by several authors, see
for example [3,4,12-19]. Many special cases involving well-known families of polynomials are also given. As mentioned by
Srivastava et al. [14], each integral representations derived in this paper may be viewed as a linearization relationship for the
product of two different members of the associated family of hypergeometric polynomials.



Download English Version:

https://daneshyari.com/en/article/4626452

Download Persian Version:

https://daneshyari.com/article/4626452

Daneshyari.com


https://daneshyari.com/en/article/4626452
https://daneshyari.com/article/4626452
https://daneshyari.com

