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a b s t r a c t

A local convergence analysis of Inexact Newton’s method with relative residual error toler-

ance for finding a singularity of a differentiable vector field defined on a complete Riemannian

manifold, based on majorant principle, is presented in this paper. We prove that under local

assumptions, the Inexact Newton method with a fixed relative residual error tolerance con-

verges Q linearly to a singularity of the vector field under consideration. Using this result we

show that the Inexact Newton method to find a zero of an analytic vector field can be imple-

mented with a fixed relative residual error tolerance. In the absence of errors, our analysis

retrieves the classical local theorem on the Newton method in Riemannian context.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Newton’s method and its variations, including the Inexact Newton methods, are the most efficient methods known for solving

nonlinear equations in Banach spaces. Besides its practical applications, Newton’s method is also a powerful theoretical tool with a

wide range of applications in pure and applied mathematics, see [6,11,16,23,24,26,33,34]. In particular, Newton’s method has been

instrumental in the modern complexity analysis of the solution of polynomial or analytical equations [6,25], linear and quadratic

programming problems and linear semi-definite programming problems [15,16,23,24]. In all these applications, homotopy

methods are combined with Newton’s method, which helps the algorithm to keep track of the solution of a parameterized

perturbed version of the original problem.

In classic Newton’s method, a linear equation system is solved in each iteration which can be expensive and unnecessary

when the problem size is large. Inexact Newton’s method comes up to overcome such drawback and can effectively cut down the

computational cost by solving the linear equations approximately, see [9,12,21]. It would be most desirable to have an a priori

prescribed residual error tolerance in the iterative solutions of linear system for computing the Inexact Newton steps, in order

to avoid under-solving or over-solving the linear system in question. The advantage of working with an error tolerance on the

residual rests in the fact that the exact Newton step need not to be known for evaluating this error, which makes this criterion

attractive for practical applications, see [15,16].
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Newton’s method has been extended to Riemannian manifolds with many different purposes. In particular, in the last

few years, a couple of papers have dealt with the issue of convergence analysis of Newton’s method for finding a singularity

of a differentiable vector field defined on a complete Riemannian manifold, see [1–5,8,13,14,18–20,26,28–32]. Extensions to

Riemannian manifolds of analyses of Newton’s method under the γ -condition was given in [8,18–20]. Although the local

convergence analysis of Inexact Newton’s method in Banach space with relative errors tolerance in the residue [7,9,21] are well

understood, as far as we know, the convergence analysis of the method in Riemannian manifolds context under general local

assumptions, assuming only bounded relative residual errors, is a new contribution of this paper. It is worth to point out that, for

null error tolerance, the analysis presented merge in the usual local convergence analysis on Newton’s method in Riemannian

manifold under a majorant condition, see [13]. In our analysis, the classical Lipschitz condition is relaxed using a majorant

function which provides a clear relationship between the majorant function and the vector field under consideration. Moreover,

several unrelated previous results pertaining to Newton’s method are unified (see [8,18,19]), now in the Riemannian context.

The organization of the paper is as follows. In Section 2, the notations and basic results used in the paper are presented.

In Section 3 the main result is stated and in Section 4 some properties of the majorant function are established and the main

relationships between the majorant function and the vector field used in the paper are presented. In Section 5 the main result is

proved and two applications of this result are given in Section 6. Some final remarks are made in Section 7.

2. Notation and auxiliary results

In this section we recall some notations, definitions and basic properties of Riemannian manifolds used throughout the paper,

they can be found, for example in [10] and [17].

Throughout the paper, M is a smooth manifold and C1(M) is the class of all continuously differentiable functions on M. The

space of vector fields on M is denoted by X (M), by TpM we denote the tangent space of M at p and by TM = ⋃
x∈M TxM the

tangent bundle of M. Let M be endowed with a Riemannian metric 〈 ·, ·〉, with corresponding norm denoted by ‖ · ‖, so that M is

now a Riemannian manifold. Let us recall that the metric can be used to define the length of a piecewise C1 curve ζ : [a, b] → M
joining p to q, i.e., such that ζ (a) = p and ζ (b) = q, by l(ζ ) = ∫ b

a ‖ζ ′(t)‖dt. Minimizing this length functional over the set of all such

curves we obtain a distance d(p, q), which induces the original topology on M. The open and closed balls of radius r > 0 centered

at p are defined, respectively, as

Br(p) := {q ∈ M : d(p, q) < r} , Br(p) := {q ∈ M : d(p, q) ≤ r} .

Also the metric induces a map f ∈ C1(M) 
→ grad f ∈ X (M), which associates to each f its gradient via the rule 〈grad f, X〉 = df(X),

for all X ∈ X (M). The chain rule generalizes to this setting in the usual way: (f◦ζ )′(t) = 〈grad f (ζ (t)), ζ ′(t)〉, for all curves ζ � C1.

Let ζ be a curve joining the points p and q in M and let � be a Levi–Civita connection associated to (M, 〈, 〉). For each t � [a, b],

� induces an isometry, relative to 〈 ·, ·〉,

Pζ ,a,t : Tζ (a)M −→ Tζ (t)M
v 
−→ Pζ ,a,t v = V(t), (1)

where V is the unique vector field on ζ such that ∇ζ ′(t)V(t) = 0 and V(a) = v, the so-called parallel translation along ζ from ζ (a)

to ζ (t). Note also that

Pζ ,b1,b2
◦ Pζ ,a,b1

= Pζ ,a,b2
, Pζ ,b,a = Pζ ,a,b

−1
.

A vector field V along ζ is said to be parallel if ∇ζ ′ V = 0. If ζ ′ itself is parallel, then we say that ζ is a geodesic. The geodesic

equation ∇ ζ ′ζ ′ = 0 is a second order nonlinear ordinary differential equation, so the geodesic ζ is determined by its position p

and velocity v at p. It is easy to check that ‖ζ ′‖ is constant. We say that ζ is normalized if ‖ζ ′‖ = 1. A geodesic ζ : [a, b] → M is

said to be minimal if its length is equal the distance of its end points, i.e. l(ζ ) = d(ζ (a), ζ (b)).

A Riemannian manifold is complete if its geodesics are defined for any values of t. The Hopf–Rinow’s theorem asserts that if

this is the case then any pair of points, say p and q, in M can be joined by a (not necessarily unique) minimal geodesic segment.

Moreover, (M, d) is a complete metric space and bounded and closed subsets are compact.

The exponential map at p, expp : TpM → M is defined by exppv = ζ v(1), where ζ v is the geodesic defined by its position p and

velocity v at p and ζ v(t) = expptv for any value of t. For p ∈ M, let

rp := sup
{

r > 0 : expp|Br (op)
is a diffeomorphism

}
,

where op denotes the origin of TpM and Br(op) := {v ∈ TpM : ‖v − op‖ < r}. Note that if 0 < δ < rp then exppBδ(op) = Bδ(p). The

number rp is called the injectivity radius of M at p.

Definition 1. Let p ∈ M and rp the radius of injectivity at p. Define the quantity

Kp := sup

{
d(expq u, expq v)

‖u − v‖ : q ∈ Brp
(p), u, v ∈ TqM, u = v,‖v‖ ≤ rp,‖u − v‖ ≤ rp

}
.

Remark 1. The quantity Kp measures how fast the geodesics spread apart in M. In particular, when u = 0 or more generally

when u and v are on the same line through oq,

d(expq u, expq v) = ‖u − v‖.
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