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a b s t r a c t

In this paper, we investigate the elliptic analogues of the Apostol–Bernoulli and Apostol–Euler

polynomials and obtain the closed expressions of sums of products for these elliptic type

polynomials. Some interesting special cases are also shown.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) together with their familiar generalizations B(α)
n (x) and

E(α)
n (x) of (real or complex) order α are usually defined by means of the following generating functions (see, for details, [21, pp.

25–32] and [26, pp. 59–66]):(
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Obviously, the classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are respectively defined by

Bn (x) := B
(1)
n (x) and En (x) := E

(1)
n (x) (n ∈ N0),

where N0 = N ∪ {0} and N = {1, 2, . . .}.
The Bernoulli numbers Bn and Euler numbers En are respectively defined by

Bn := Bn

(
0
)

and En := 2nEn

(
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)
.
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Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol [1, p. 165,

Eq. (3.1)] and (more recently) by Srivastava [24, pp. 83–84]. Here we begin by recalling Apostol’s definitions as follows:

Definition 1.1 (Apostol [1]; see also Srivastava [24]). The Apostol–Bernoulli polynomials Bn(x; λ) in x are defined by means of

the generating function:
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(|z|<2π when λ = 1; |z|< |log λ| when λ �= 1)

with, of course,

Bn(x) = Bn(x; 1) and Bn

(
λ
)

:= Bn

(
0; λ

)
,

where Bn

(
λ
)

denotes the so-called Apostol–Bernoulli numbers (in fact, it is a function in λ).

Recently, Luo and Srivastava extended further the so-called Apostol–Euler polynomials as follows:

Definition 1.2 (Luo and Srivastava [15] or Luo [16]). The Apostol–Euler polynomials En(x; λ) in x are defined by means of the

generating function:
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with, of course,

En(x) = En(x; 1) and En

(
λ
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:= 2nEn
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,

where En

(
λ
)

denote the so-called Apostol–Euler numbers (in fact, it is a function in λ).

The Apostol–Bernoulli polynomials and Apostol–Euler polynomials have been investigated by many authors (see, e.g.,

[1,2,4,6,8,13,15–19,24,25,27]). The formulas of sums of products for the Bernoulli and Euler polynomials and numbers have

been investigated in the references [5,7,10,12,23]. Recently, Ivashkevich et al. and Machide introduced Kronecker’s double series

as an elliptic analogue for the Bernoulli polynomials and also gave their the formulas of sums of products (see, [11,20]).

In the present paper, we define the elliptic Apostol–Bernoulli polynomials and elliptic Apostol–Euler polynomials by means

of the corresponding generalized Eisenstein summation and generalized Jacobi’s theta function. We obtain the formulas of sums

of products for the elliptic Apostol–Bernoulli and elliptic Apostol–Euler polynomials.

The paper is organized as follows: In the second section we define the elliptic Apostol–Bernoulli polynomials and obtain the

formula of sums of products for the elliptic Apostol–Bernoulli polynomials. In the third section we define the elliptic Apostol–Euler

polynomials and show some formulas for the elliptic Apostol–Euler polynomials.

2. Elliptic Apostol–Bernoulli polynomials

In this section we define the elliptic Apostol–Bernoulli polynomials and give the formulas for sums of products of the elliptic

Apostol–Bernoulli polynomials. Some special cases are also shown.

We will use some standard notation: H := {τ ∈ C|τ : �τ > 0}, e(t) := exp(2π it), q = e(τ ), z = e(ξ), w = e(x). The classical

Jacobi’s theta functions [21, p. 371] are defined by
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where Z denotes the set of integers.

From (2.1) and (2.2), we easily verify the following quasi periodicity properties:

ϑ1(x + 1; τ) = −ϑ1(x; τ), ϑ1(x + τ ; τ) = −e
(
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2

)
ϑ1(x; τ), (2.3)

ϑ2(x + 1; τ) = −ϑ2(x; τ), ϑ2(x + τ ; τ) = e
(
−x − τ

2

)
ϑ2(x; τ). (2.4)
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