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We present some inequalities and asymptotic expansions associated with the Ramanujan and

Nemes formulas for the gamma function.
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1. Introduction

The Indian mathematician Ramanujan (see [25, p. 339] and [4, pp. 117–118]) claimed that
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where θ x → 1 as x → � and 3
10 < θx < 1. That is,
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Ramanujan’s claim has been the subject of intense investigations and is reviewed in [5, p. 48, Question 754], and has motivated

a large number of research papers (see, for example, [3,6,7,10,12–14,17–19,21–23,26]).

Karatsuba [14] proved that the function
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is monotonically increasing from [1, �) onto [h(1), h(�)) with h(1) = e6/π3 − 13 = 0.0111976 . . . and h(�) = 1/30 = 0.0333 . . . .

Also, Karatsuba [14, Eq. (5.5)] established the asymptotic representation of the gamma function
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, x → ∞ (1.2)

(x−6 term corrected). Moreover, the author gave a formula for successively determining the coefficients. Alzer [3] proved that in

(0, 1] the constant term 1
100 can be replaced by the best possible min 0.6 � x � 0.7θ x = 0.0100450 . . . and that the improved double

inequality for θ x holds for 0 � x < �.

Hirschhorn [12] established that θn (for n ∈ N := {1, 2, . . .}) satisfies the inequalities
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In [26], a proof of the monotonicity of θn was given and the concavity of θn was also noted without proof. Hirschhorn and

Villarino [13] improved (1.3) and obtained the following inequality
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and then used it to prove that θn is increasing and concave.

Recently, Mortici [17] presented the following analogous result to (1.1):
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, x → ∞. (1.5)

The first aim of present paper is to unify the formulas (1.2) and (1.5), and develop (1.5) to produce a complete asymptotic

expansion. More precisely, we give a recursive relation for determining the coefficients pj � pj(r) such that
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where r 	= 0 is a given real number.

Very recently, Chen [7] presented a sharp version of Ramanujan’s inequality for the factorial function and obtained the

following result. For all n ∈ N,
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with the best possible constants
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Using the Maple software, we find, as x → �,
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Obviously, the formula (1.8) is better than the formulas (1.7).
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