Barnes-type degenerate Euler polynomials

Dmitry V. Dolgy ${ }^{\text {a }}$, Dae San Kim ${ }^{\text {b }}$, Taekyun Kim ${ }^{\text {c }}$, Toufik Mansour ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Institute of Natural Sciences, Far Eastern Federal University, Vladivostok, 690950, Russia
${ }^{\mathrm{b}}$ Department of Mathematics, Sogang University, Seoul 121-742, South Korea
${ }^{\text {c }}$ Department of Mathematics, Kwangwoon University, Seoul, South Korea
${ }^{\text {d }}$ Department of Mathematics, University of Haifa, Haifa 3498838, Israel

ARTICLE INFO

MSC:

05A40
11B83

Keywords:

Barnes-type degenerate Euler Polynomials
Bernoulli polynomials
Umbral calculus

Abstract

In this paper, we consider the Barnes-type degenerate Euler polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The goals of this paper are to use umbral calculus to obtain several new and interesting identities of Barnes-type degenerate Euler polynomials. Umbral calculus has been used in numerous problems of mathematics (for example, see [1,4,5,7,11-14,17]) and used in different areas of physics; for example it is used in group theory and quantum mechanics by Biedenharn et al. $[2,3]$ (for other examples, see [12] and references therein).

Recall that the Bernoulli numbers of order s (see [9,10]) are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{s}=\sum_{\ell \geq 0} B_{\ell}^{(s)} \frac{t^{\ell}}{\ell!} \tag{1}
\end{equation*}
$$

For $\mu \in \mathbb{C}$ with $\mu \neq 1$, the Frobenius-Euler polynomials of order s (see [6,7]) are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{1-\mu}{e^{t}-\mu}\right)^{s} e^{t x}=\sum_{\ell \geq 0} H_{\ell}^{(s)}(x \mid \mu) \frac{t^{\ell}}{\ell!} \tag{2}
\end{equation*}
$$

For $r \in \mathbb{Z}_{>0}$, the Barnes-type degenerate Euler polynomials $E_{n}\left(\lambda, \chi \mid a_{1}, \ldots, a_{r}\right)$ are defined by the generating function

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\frac{2}{(1+\lambda t)^{a_{i} / \lambda}+1}\right)(1+\lambda t)^{x / \lambda}=\sum_{n \geq 0} E_{n}\left(\lambda, x \mid a_{1}, \ldots, a_{r}\right) \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

[^0]If $x=0, E_{n}\left(\lambda \mid a_{1}, \ldots, a_{r}\right)=E_{n}\left(\lambda, 0 \mid a_{1}, \ldots, a_{r}\right)$ are called the Barnes-type degenerate Euler numbers. We note here that

$$
\lim _{\lambda \rightarrow 0} E_{n}\left(\lambda, x \mid a_{1}, \ldots, a_{r}\right)=E_{n}\left(x \mid a_{1}, \ldots, a_{r}\right),
$$

$$
\lim _{\lambda \rightarrow \infty} \lambda^{-n} E_{n}\left(\lambda, \lambda x \mid a_{1}, \ldots, a_{r}\right)=(x)_{n}=x(x-1)(x-2) \cdots(x-n+1)
$$

where $\prod_{i=1}^{r}\left(\frac{2}{e^{a_{i} t}+1}\right) e^{t x}=\sum_{n \geq 0} E_{n}\left(x \mid a_{1}, \ldots, a_{r}\right) \frac{t^{n}}{n!}$. For $x=r=a_{1}=1$, we write $E_{n}(1)=E_{n}(1 \mid 1)$ (see $[9,10]$). In the special case of $a_{1}=\cdots=a_{r}=1, E_{n}^{(r)}(\lambda, x)=E_{n}(\lambda, x \mid 1, \ldots, 1)$ are called the degenerate Euler polynomials of order r (see [8]).

In order to study the Barnes-type degenerate Euler polynomials, we use of the umbral calculus technique. Let Π be the algebra of polynomials in a single variable x over \mathbb{C}. We denote the vector space of all linear functionals on Π by Π^{*}. The action of a linear functional $L \in \Pi^{*}$ on a polynomial $p(x)$ is denoted by $\langle L \mid p(x)\rangle$, and linearly extended as $\left\langle c L+c^{\prime} L^{\prime} \mid p(x)\right\rangle=c\langle L \mid p(x)\rangle+c^{\prime}\left\langle L^{\prime} \mid p(x)\right\rangle$, where $c, c^{\prime} \in \mathbb{C}($ see $[15,16])$. Let

$$
\begin{equation*}
\mathcal{H}=\left\{\left.f(t)=\sum_{k \geq 0} a_{k} \frac{t^{k}}{k!} \right\rvert\, a_{k} \in \mathbb{C}\right\} \tag{4}
\end{equation*}
$$

be the algebra of formal power series in a single variable t. The formal power series in the variable t defines a linear functional on Π by setting $\left\langle f(t) \mid x^{n}\right\rangle=a_{n}$, for all $n \geq 0$ (see [15,16]). So, by (4), we have

$$
\begin{equation*}
\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{n, k}, \text { for all } n, k \geq 0,(\text { see }[15,16]) \tag{5}
\end{equation*}
$$

where $\delta_{n, k}$ is the Kronecker's symbol. Let $f_{L}(t)=\sum_{n \geq 0}\left\langle L \mid x^{n}\right\rangle \frac{t^{n}}{n!}$. By (5), we have that $\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle$. So, the map $L \mapsto f_{L}(t)$ is a vector space isomorphism from Π^{*} onto \mathcal{H}. Thus, \mathcal{H} is thought of as set of both formal power series and linear functionals. We call \mathcal{H} the umbral algebra. The umbral calculus is the study of umbral algebra.

The order $O(f(t))$ of the non-zero power series $f(t)$ is the smallest integer k for which the coefficient of t^{k} does not vanish (see [15,16]). If $O(f(t))=1$ (respectively, $O(f(t))=0$), then $f(t)$ is called a delta (respectively, an invertable) series. Suppose that $O(f(t))=1$ and $O(g(t))=0$, then there exists a unique sequence $s_{n}(x)$ of polynomials such that $\left\langle g(t)(f(t))^{k} \mid s_{n}(x)\right\rangle=n!\delta_{n, k}$, where $n, k \geq 0$. The sequence $s_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$, and we write $s_{n}(x) \sim(g(t), f(t))($ see $[15,16])$. For $f(t) \in \mathcal{H}$ and $p(x) \in \Pi$, we have that $\left\langle e^{y t} \mid p(x)\right\rangle=p(y),\langle f(t) g(t) \mid p(x)\rangle=\langle g(t) \mid f(t) p(x)\rangle, f(t)=\sum_{n \geq 0}\left\langle f(t) \mid x^{n}\right\rangle \frac{t^{n}}{n!}$ and $p(x)=\sum_{n \geq 0}\left\langle t^{n} \mid p(x)\right\rangle \frac{\lambda^{n}}{n!}$. Therefore,

$$
\begin{equation*}
\left\langle t^{k} \mid p(x)\right\rangle=p^{(k)}(0), \quad\left\langle 1 \mid p^{(k)}(x)\right\rangle=p^{(k)}(0) \tag{6}
\end{equation*}
$$

where $p^{(k)}(0)$ denotes the k th derivative of $p(x)$ with respect to x at $x=0$. So, by (6), we get that $t^{k} p(x)=p^{(k)}(x)=\frac{d^{k}}{d x^{k}} p(x)$, for all $k \geq 0$, (see [15,16]).

Let $s_{n}(x) \sim(g(t), f(t))$. Then we have

$$
\begin{equation*}
\frac{1}{g(\bar{f}(t))} e^{y \bar{f}(t)}=\sum_{n \geq 0} s_{n}(y) \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

for all $y \in \mathbb{C}$, where $\bar{f}(t)$ is the compositional inverse of $f(t)$ (see [15,16]). For $s_{n}(x) \sim(g(t), f(t))$ and $r_{n}(x) \sim(h(t)$, $\ell(t))$, let $s_{n}(x)=\sum_{k=0}^{n} c_{n, k} r_{k}(x)$, then we have

$$
\begin{equation*}
c_{n, k}=\frac{1}{k!}\left\langle\left.\frac{h(\bar{f}(t))}{g(\bar{f}(t))}(\ell(\bar{f}(t)))^{k} \right\rvert\, x^{n}\right\rangle, \tag{8}
\end{equation*}
$$

(see [15,16]).
By the theory of Sheffer sequences, it is immediate that the Barnes-type degenerate Euler polynomial is the Sheffer sequence for the pair $g(t)=\prod_{i=1}^{r}\left(\frac{e^{a_{i} t}+1}{2}\right)$ and $f(t)=\frac{1}{\lambda}\left(e^{\lambda t}-1\right)$. Thus

$$
\begin{equation*}
E_{n}\left(\lambda, x \mid a_{1}, \ldots, a_{r}\right) \sim\left(\prod_{i=1}^{r}\left(\frac{e^{a_{i} t}+1}{2}\right), \frac{1}{\lambda}\left(e^{\lambda t}-1\right)\right) . \tag{9}
\end{equation*}
$$

The aim of the present paper is to present several new identities for Barnes-type degenerate Euler polynomials by the use of umbral calculus.

2. Explicit expressions

In this section we suggest several explicit formulas for the Barnes-type degenerate Euler polynomials. In order to do that, we recall that the Stirling numbers $S_{1}(n, m)$ of the first kind are defined as $(x)_{n}=\sum_{m=0}^{n} S_{1}(n, m) x^{m} \sim\left(1, e^{t}-1\right)$ or $\frac{1}{j!}(\log (1+t))^{j}=$ $\sum_{\ell \geq j} S_{1}(\ell, j)_{\frac{t^{\ell}}{\ell}}$. Define $(x \mid \lambda)_{n}$ to be $\lambda^{n}(x / \lambda)_{n}$, for all n. Also, we define

$$
P_{r}(t)=\prod_{i=1}^{r}\left(\frac{2}{(1+\lambda t)^{a_{i} / \lambda}+1}\right)
$$

https://daneshyari.com/en/article/4626487

Download Persian Version:
https://daneshyari.com/article/4626487

Daneshyari.com

[^0]: * Corresponding author. Tel.: +972 4 8240705; fax: +972 48240024.

 E-mail addresses: d_dol@mail.ru (D.V. Dolgy), dskim@sogang.ac.kr (D.S. Kim), taekyun64@hotmail.com (T. Kim), toufik@math.haifa.ac.il, tmansour@univ.haifa.ac.il (T. Mansour).

