Microprocessors and Microsystems 39 (2015) 259-270

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

Hardware software partitioning of control data flow graph on system

on programmable chip

Mehdi Jemai *, Bouraoui Ouni

@ CrossMark

Laboratory Electronic and Microelectronic, The National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia

ARTICLE INFO ABSTRACT

Article history:
Available online 11 May 2015

Keywords:

Hardware-software partitioning
SOPC

Control data flow graph
Co-design

A System On Programmable Chip (SOPC) is a circuit that integrates all components of an electronic sys-
tem into a single chip. It may consist of memories, one or more microprocessors, interface devices, con-
figurable logic blocks and other necessary components to achieve an intended function. In this paper, we
propose a new hardware-software partitioning algorithm of control data flow graph for SOPC. The main
aim of our algorithm is to find a best compromise between hardware and software implementation of
operations in order to satisfy design constraints in terms of latency and hardware resources of the target
application. Our algorithm has been evaluated on real hardware device. In fact, experimentations have
been done using a real FPGA Virtex-5. Results have shown that our algorithm provides a better perform-

ing system with the lowest possible cost compared to existing approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modern FPGA has become much more sophisticated than
before. It can hold central processing unit (CPU) and several
RAMs and DSPs at the same time. In fact, new FPGA device (such
as Xilinx Virtex-family) includes two subsets of resources: soft-
ware resources and hardware one. Software resources may be
one or more hard processors or DSP (example IBM PowerPC of
Xilinx, AVER of Atmel). The hardware resources may be transcei-
vers, analog-blocks, multiply-accumulate modules (MACs), RAMs
blocks and Configurable Logic Blocks (CLBs). Therefore, current
FPGA which is a programmable System On Chip (SOC); is called
System On Programmable Chip (SOPC). Nowadays, several design-
ers prefer to use SOPC to implement their applications. These
applications should meet design constraints like performance, flex-
ibility, and time to market. Often, co-design efficiency has been
related to hardware-software partitioning task. Hardware-soft-
ware partitioning is a system-level partitioning problem. It aims
to assign operations of the application to the hardware part or to
the software part of the SOPC in order to obtain a faster treatment
with lowest cost. In this paper, we aim to solve the following
problem:

Given a control data flow graph and SOPC circuit; find a possible
hardware-software partitioning of a graph on the SOPC in order to

* Corresponding author.
E-mail addresses: jmehdie@gmail.com (M. Jemai), ouni_bouraoui@yahoo.fr
(B. Ouni).

http://dx.doi.org/10.1016/j.micpro.2015.04.006
0141-9331/© 2015 Elsevier B.V. All rights reserved.

get a better compromise between hardware resources used to
implement the target graph and its whole latency.

Our algorithm is based on a function called generating of parti-
tion object. At each algorithm iteration, this function returns a
sub-graph called partition object of the original graph. Next, we
compute the hardware-software latency and the hardware area
cost of each generated partition object. This procedure will be
repeated until the hardware-software latency of one among the
generated partition objects closes to its hardware area cost. In
other words, the mentioned function generates many partition
objects (e.g.: 1% hardware 99% software, 25% hardware 75% soft-
ware, etc.). For each partition object, the latency value will be cal-
culated and a curve will be drawn using these different values.
Then, the area cost will be computed as well and a second curve
will be produced. When these two curves will be superimposed,
a unique intersection point will be obtained. That point refers to
the best partition object that should be used.

2. Related works

In the literature, many designers have proposed hardware-soft-
ware partitioning algorithm for (SOC) System On Chip [1,2]. In pre-
vious works, hardware-software partitioning was carried out
manually [3]. However, in reality hardware-software partitioning
is more complicated and many requirements on: cost, hardware
effort, power dissipation and timing performance have to be taken
into consideration. So, efforts have been increased in order to auto-
mate the hardware-software partitioning task. For that purpose

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.04.006&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.04.006
mailto:jmehdie@gmail.com
mailto:ouni_bouraoui@yahoo.fr
http://dx.doi.org/10.1016/j.micpro.2015.04.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

260

M. Jemai, B. Ouni/Microprocessors and Microsystems 39 (2015) 259-270

Single partition . Mix partition
object 7*"\ & object
\
\

Larger /m/'l/'li(y

object

Fig. 1. The three kind of partitions object.

many optimization methods have been used to come up with new
algorithms such as exact algorithms that are based on: integer lin-
ear programming [4], dynamic programming [5] and branch-and
bound [6]. However, exact algorithms are very slow and can be
applied only for small size graphs. Hence, to overcome its draw-
backs, researchers have turned to more flexible and efficient
heuristic algorithms. Traditional heuristic algorithms are
software-oriented and hardware-oriented. The software-oriented
approach means that the initial implementation of the whole
application is supposed to be a software solution. Next, during
the partitioning, the operations of the application are migrated to
hardware until constraints are met [7]. Moreover, other
hardware-software partitioning simulated annealing [8-11],

1: Begin

2: Forall v;eV

3: Compute ST (v;)
4: Compute J (v;)
5: End for

. /- Generating of single partitions object //

:k=1keN

6
7: Forall v;eV:
8

If Vep (ST (V)2 1&(J(v,)=0)) then

Py <={v;} // P.isk™ single partition object //
10: Pog<=Py; // Pogthe set of partitions object //
11: k=k+1;
12: End if;
13: End for

14: m=k;m€e N

-1 //— Generating of large partitions object //

15: Forall v; €V :
16: 1If Vv ev ((J (vy)=1) then
17 While (J(v;) # 1)) loop

18: Po<={v;,.,v};// Pyis m™ large partition object //

19: End loop

20: Pog <=P,; // Pog the set of partitions object //

21: m=mtl;

22: Endif;

23: End for

24: z=zm;z € N

-1 //- Generating of mix partitions object //
25: While (P;#{V}) loop

26: For all partition object P; € Pog

27: IV, ey (J(pred (P;) = 0) then // pred (P;) the predecessor of the source node of the it large partition //
28: P,<= { pred(P;) ; P;}: /P, is 2" mix partition object /
29: Pog <=P, // Pog the set of partitions object //

30: z=z7+1;

31: else

32: P,<={Pii,Pi};

33: Pog <=P, // Pog the set of partitions object //

34: z=7+1

35: End if;

36: If Ve 5 (J (succ (P)=0) then // succ(P;) the successor of the sink node of the i large partition
37: P,<={P;; succ(P)) } ;

38: Pog <=P, // Pogthe set of partitions object //

39: z=z7+1;

40: else

41: P,<= {P;. P},

42: Pog <=P, // Pog the set of partitions object //

43: z=z+1;

44: endif;

45: P,<={P,y; P;; P \Pi};

46: Pog <=P, // Pog the set of partitions object //

47 z=z+1;

48: End for;

49: End loop;
50: End begin

Fig. 2. Pseudo-code of generating of partitions object function.

Download English Version:

https://daneshyari.com/en/article/462649

Download Persian Version:

https://daneshyari.com/article/462649

Daneshyari.com

https://daneshyari.com/en/article/462649
https://daneshyari.com/article/462649
https://daneshyari.com

