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1. Introduction

In [8], Jain proposed a new class of positive linear operators with the help of a Poisson type distribution as follows:
(] o k
P (fix) = gf<n)wﬂ(k’ nx), x>=0neN,

where
et e—(nx+kﬂ)

wg (k, nx) = nx(nx + k) P

0<B<1

and

> wglk.nx) =1,

k=0
and studied convergence property and the order of approximation of these operators on a finite closed interval of R* under the

restriction 8 — 0 as n — oo. Later, Farcas [4] proved a Voronovskaya type theorem for Jain’s operators. Recently, in [1], Agratini

obtained local approximation results and statistical convergence property of the positive linear operators P,[lﬁ I Note that when
B = 0 the operators defined by Jain reduce to the well known Szasz-Mirakyan operators

Sn(f1 %) =e""§:f(lrj> (';(x')k, x>0,neN.

k=0
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In 2014, Aral et al. [2] introduced a generalization of Szasz-Mirakyan operators based on a function p as

> k
SE(fix) = e ,Z (for™) (k) <nﬂk<;<>>
k=0

n

= (Sa(fop)op) ()
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where p is a function such that

(p1) p is a continuously differentiable function on R*
(02) p(0) =0, infycp+ p'(x) = 1.

We observe from the above conditions we have limy_, ., p(x) = co and |t — x| < |p(t) — p(x)| for all x,t € R*. The authors
proved a weighted convergence theorem and a Voronovskaya type theorem and also obtained the degree of approximation
by means of the weighted modulus of continuity for these operators. Moreover, they studied some preservation properties of
SE(f: %).

Motivated with this work, we consider a generalization of the linear positive operators P,Lﬂ ] (f; x) as follows:

SEP(fix) = (fop™) (ﬁ)wﬁ(k, np(x))
k=0
= if(,o—l(:;))wﬁ(k,np(x)), x>0,neN (11)
k=0

where wg(k, np(x)) defined as in P,Lﬂ] (f; x) and the function p has the properties given by (p1) and (). Note that for 8 = 0 and

additionally p(x) = x the operators Sﬁ'p (f: x) turn out to be the operators S% (f; x) and Sp(f; X), respectively.

In the present paper, we firstly introduce convergence property via weighted Korovkin type theorem given in [5,6] and find
an estimate with the help of the weighted modulus of continuity defined in [7]. Furthermore, we prove a Voronovskaya type
result for the operators Sf"’ (f;x).

2. Convergence of S5°° (f; x)

Firstly, we introduce some auxiliary results.

Lemma 2.1. For the operators defined by (1.1) we have
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Using the recurrence formula given in [8] it can be proved. So we omit it. Now from the linearity of the operators S’,? P(f; %)
we can state the following lemma.

Lemma 2.2. For the operators defined by (1.1) we have

SEP(p(t) = p(x);x) = ffi(;) (2.6)
B.p B 2.\ B’ p(x)
Si (0 = p()*x) = 3 5yt at- By 2.7)
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