
A new cache replacement algorithm for last-level caches by exploiting
tag-distance correlation of cache lines

Cong Thuan Do a, Hong-Jun Choi b, Jong Myon Kim c, Cheol Hong Kim a,⇑
a School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
b The Affiliated Institute of ETRI, Daejeon 305-390, Republic of Korea
c School of Electrical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea

a r t i c l e i n f o

Article history:
Available online 14 May 2015

Keywords:
Cache
Replacement policy
Performance
Cache miss
Cache tag

a b s t r a c t

Cache memory plays a crucial role in determining the performance of processors, especially for embed-
ded processors where area and power are tightly constrained. It is necessary to have effective manage-
ment mechanisms, such as cache replacement policies, because modern embedded processors require
not only efficient power consumption but also high performance. Practical cache replacement algorithms
have focused on supporting the increasing data needs of processors. The commonly used Least Recently
Used (LRU) replacement policy always predicts a near-immediate re-reference interval, hence, applica-
tions that exhibit a distant re-reference interval may perform poorly under LRU replacement policy. In
addition, recent studies have shown that the performance gap between LRU and theoretical optimal
replacement (OPT) is large for highly-associative caches. LRU policy is also susceptible to
memory-intensive workloads where a working set is greater than the available cache size. These reasons
motivate the design of alternative replacement algorithms to improve cache performance. This paper
explores a low-overhead, high-performance cache replacement policy for embedded processors that uti-
lizes the mechanism of LRU replacement. Experiments indicate that the proposed policy can result in sig-
nificant improvement of performance and miss rate for large, highly-associative last-level caches. The
proposed policy is based on the tag-distance correlation among cache lines in a cache set. Rather than
always replacing the LRU line, the victim is chosen by considering the LRU-behavior bit of the line com-
bined with the correlation between the cache lines’ tags of the set and the requested block’s tag. By using
the LRU-behavior bit, the LRU line is given a chance of residing longer in the set instead of being replaced
immediately. Simulations with an out-of-order superscalar processor and memory-intensive benchmarks
demonstrate that the proposed cache replacement algorithm can increase overall performance by 5.15%
and reduce the miss rate by an average of 11.41%.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, innovation in processor architecture has created
a gap between processor and memory performance that has been
rapidly increasing. Processor performance is now crucially deter-
mined by the amount of memory accesses served from on-chip
caches since the cost of access to main memory has grown to hun-
dreds of cycles. In response to the need for better caching, many
researchers have extensively attempted to increase the cache size
or to hide latency through sophisticated prefetching and
out-of-order execution techniques. In fact, adding a cache hierar-
chy between the processor and main memory is still regarded as
a primary means to hide the memory latency from the processor.

However, when compared to the development of sophisticated
prefetching or out-of-order techniques, cache replacement algo-
rithms have had relatively little recent works to improve their per-
formance. Indeed, the implicit assumption seems to be that the
Least Recently Used (LRU) policy is good enough, and that there
are few that can increase hit rates for a given size without adding
expensive logic to the cache.

As the processor/memory gap continues to grow, it becomes
necessary to improve the behavior of the cache hierarchy. This
can be simply done by increasing its associativity to reduce the
number of conflict misses. When cache associativity increases, how-
ever, the replacement algorithm becomes more important [1]. As a
result, practical cache replacement policies, which attempt to emu-
late Belady’s optimal replacement (OPT) [2] by predicting the
re-reference of a cache block, play a central role in the design of
memory hierarchy.

http://dx.doi.org/10.1016/j.micpro.2015.05.005
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +82 62 530 1806.
E-mail address: chkim22@jnu.ac.kr (C.H. Kim).

Microprocessors and Microsystems 39 (2015) 286–295

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.05.005&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.05.005
mailto:chkim22@jnu.ac.kr
http://dx.doi.org/10.1016/j.micpro.2015.05.005
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


An OPT policy executes replacement decisions by using perfect
knowledge of the re-reference (or reuse) pattern of each cache
block, and thus, OPT can ideally identify the block in a set that will
be accessed farthest in the future [1]. Practical cache replacement
policies, on the other hand, make their replacement decisions
based on predictions of which one of the blocks will be
re-referenced farthest in the future and select that block for
replacement. Typically, on a miss, replacement policies make a
prediction of when the missing block will be re-referenced next.
These predictions can be improved when more information on
the block is available.

In an LRU replacement mechanism, the LRU stack (or chain)
represents the recency of the cache lines referenced. The MRU
position represents a cache line that was most recently used while
the LRU position represents a cache line that was least recently
used. Although LRU policies provide good performance for work-
loads with high data locality, they shows poor performance when
the prediction of a near-immediate re-reference interval is incor-
rect. Applications with re-references that only occur in the distant
future perform poorly under LRU policy.

Prior studies have shown that there are some main disadvan-
tages in using an LRU policy. The first one is that cache lines, called
dead lines (or dead blocks), will eventually be replaced after their
last use [3]. Under LRU replacement, dead lines are not immedi-
ately replaced since they have to traverse through the LRU stack
before reaching the LRU position. Such dead lines waste the cache
capacity that would otherwise be available for other lines.
Moreover, the travel time of such dead lines will be longer when
the associativity is high, a recent trend in the design of
lower-level caches like Last-Level Caches (LLCs). As a consequence,
the performance gap between LRU and OPT increases despite the
fact that larger associativity provides better cache performance.

The second disadvantage of LRU replacement is that temporal
locality may become inverted when there are multiple levels of
caches due to the filtering effect that the upper-level caches hide
the lower-level caches upon an upper-level hit. This causes inver-
sion of the temporal re-reference patterns of the addresses as
observed by the lower caches.

In modern embedded systems, applications have become very
large, and the presence of caches is inevitable. Therefore, recent
embedded processors have cache architectures that are as complex
as those for general purpose processors. Embedded processor
caches, especially for mobile devices, have complicated architec-
tures since all three metrics (performance, power, and area) have
to be simultaneously satisfied within given constraints. However,
since the L1 cache is optimized for short hit time, the hit time of
L2 cache is less critical, allowing for smarter cache management
strategies [3,4]. An efficient cache replacement algorithm is impor-
tant not only to increase the performance, but also to reduce power
consumption. According to previous studies [5–9], memory system
access accounts for about half of the total energy consumed by
embedded systems. Thus, reducing memory accesses would pro-
vide higher energy savings. Over the last few decades, many good
cache replacement policies have been proposed, but none achieve
comparable performance to the LRU policy without incurring high
overhead, which is an important factor in the design of embedded
processors. This motivates the development of a new, effective
cache replacement policy for embedded processors.

In this paper, we propose a low-overhead, high-performance L2
cache replacement policy for embedded processors that improves
the hit rates of the L2 cache. We consider the L2 cache to be an
LLC in this work, and we utilize the existing mechanism of the
LRU policy. Our replacement policy makes a replacement decision
by considering the tag-distance correlation among the lines of a
cache set and the LRU-behavior bit of each line. Detailed simula-
tions on 16 SPEC applications and 4 MiBench applications show

that our mechanism improves the performance for 9
memory-intensive applications by 5.15% on average and reduces
the overall L2 cache miss rate by 11.41% without slowing down
any of the remaining 11 applications by more than 1%.
Furthermore, our proposed policy only incurs a very small addi-
tional storage overhead, about 1.1 KB (0.2% of 512 KB cache).

The rest of this paper is outlined as follows. In the next section
we discuss related work. Section 3 describes and analyzes the LRU
replacement policy in detail. In Section 4, we present our proposed
cache replacement policy. Sections 5 and 6 discuss the evaluation
methodology and the experimental results obtained. Finally,
Section 7 concludes the paper.

2. Related work

Cache replacement algorithms have been developed to improve
cache performance in modern microarchitectures. Belady was the
first author to propose an optimal (OPT) replacement algorithm
in the context of paging systems that victimizes the block in a
cache set with the longest distance with respect to future usage
[2]. Later, Mattson et al. introduced an OPT to compute the optimal
miss count of a trace [10]. Although OPT guarantees a minimal
miss count, it requires knowledge of the future, and thus remains
theoretical and can only be emulated for real systems [11].

Recent studies have shown that the performance gap between
LRU and OPT has become larger for highly-associative caches. In
order to bridge the LRU/OPT gap, dead-block predictors [1,12,13]
were proposed to predict blocks that will no longer be used during
current generation times in the cache, and these blocks are then
evicted early while preserving the live blocks. Such dead-block pre-
diction can be performed in software [14] or hardware [3,15–17].
According to the state of the predictor, hardware solutions can
be classified into three categories: trace-based, count-based, and
time-based.

In modern systems, observation of the non-uniform nature of
cache misses has led to a new approach for cache replacement
algorithms. These algorithms assign different costs to cache blocks
according to well-defined criteria, and they rely on these costs to
select the victim on a cache miss. In the context of uniprocessors,
Jeong et al. [18,19] proposed a cost-sensitive cache replacement
algorithm that assigns cost based on whether a block’s next access
is predicted to be a load (high-cost) or store (low-cost).
Cost-sensitive replacement algorithms to reduce the cost of cache
misses rather than miss rates have been proposed [10–22].

Recently, there has been a renewed interest in cache bypassing
schemes. Several schemes have been proposed to improve cache
efficiency, and they can be categorized into static and dynamic
approaches. Static approaches [23,24] rely on a profile-guided
compiler to identify the lines that should bypass the cache, and
dynamic cache bypassing uses runtime behavior for the prediction
to identify bypassing opportunities [3,25–27].

3. Background

In this section, we review the mechanism of the LRU replace-
ment policy on the LLC and analyze its shortcomings in detail.

Fig. 1 illustrates the LRU stack (or LRU chain) of the LRU replace-
ment policy in the LLC. The data in the LRU stack is sorted accord-
ing to the last time it was used. When a miss occurs in L1, the
request is forwarded to the LLC. If the requested data is not cached
in the LLC, it will be copied from the main memory into the corre-
sponding set in the LLC. In case of a full LRU stack, the LRU policy
will pick the line in the LRU position for replacement. The new
item, then, is placed into the top of the stack in the MRU position.

C.T. Do et al. / Microprocessors and Microsystems 39 (2015) 286–295 287



Download English Version:

https://daneshyari.com/en/article/462651

Download Persian Version:

https://daneshyari.com/article/462651

Daneshyari.com

https://daneshyari.com/en/article/462651
https://daneshyari.com/article/462651
https://daneshyari.com

