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a b s t r a c t

Taking both white noise and Lévy jump noise into account, a stochastic logistic model with

diffusion is proposed and considered. Under some simple assumptions, the almost complete

parameters analysis of the model is carried out. In each case it is shown that the population

in each patch is either stable in time average or extinct, depending on the parameters of the

model, especially, depending on the intensity of the Lévy jump noise. Some simulation figures

are introduced to validate the theoretical results.
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1. Introduction

In the natural world, it is a common phenomenon that the individuals of species move from high population densities to

low to avoid crowding or congestion, for instance, arctic ground squirrels and vole species [1]. Thus many population models

with diffusion have been proposed and analyzed. Hastings [2] investigated the local stability of a positive equilibrium for a

deterministic single-species model with diffusion. Beretta and Takeuchi [3] established the sufficient conditions for uniqueness

and global stability of the positive equilibrium of their model. Then the results in [3] were improved by Li and Shuai [4] by using

the graph-theoretic approach to the construction of Lyapunov functions. Allen [5] considered the following logistic model with

diffusion:

dxi(t)

dt
= xi(t)[ri − aixi(t)] +

n∑
j=1, j �=i

Di jxi(t)[x j(t) − αi jxi(t)], i = 1, . . . , n, (1)

where xi(i = 1, 2, . . . , n) is the species x in patch i, ri > 0 stands for the growth rate of species x in patch i, ai > 0 represents the self-

inhibition coefficient, Dij ≥ 0 is the dispersal coefficient of species x from patch j to patch i, αij ≥ 0 “corresponds to the boundary

conditions of the continuous diffusion case, αi j = 1 for Neumann condition, αij �= 1 for Dirichlet or Robin conditions” [5], i, j =
1, . . . , n. Allen [5] (Proposition 1) has shown that if n = 2 and � := l̄1 l̄2 − D12D21 > 0, then the unique positive equilibrium x∗ =
(�1/�,�2/�) of model (1) is globally asymptotically stable, where l̄1 = a1 + D12α12, l̄2 = a2 + D21α21, �1 = r1 l̄2 + r2D12,�2 =
r2 l̄1 + r1D21. More studies in this direction can be found in [6–9] and references cited therein.

Population growth in the natural world is inherently stochastic because of numerous unpredictable causes [24,25]. Therefore

it is important to investigate stochastic population models with diffusion, and to reveal the effects of environmental noises on

the properties of the models. By taking the white noise into account, the authors [10] considered the following stochastic logistic
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model with diffusion

dxi(t) = xi(t)[ri − aixi(t)]dt +
n∑

j=1, j �=i

Di jxi(t)[x j(t) − αi jxi(t)]dt +
m∑

j=1

σi jxi(t)dWj(t), i = 1, . . . , n (2)

where W1(t),W2(t), . . . ,Wm(t) are independent standard Brownian motions defined on a complete probability space (�,F ,P),

σ 2
i j

is the intensity of the white noise, i = 1, . . . , n, j = 1, . . . , m. Under the conditions that n = 2 and � > 0, the authors [10] have

obtained the critical value between stability in time average and extinction for the population in each patch of model (2).

Motivated by [10], some interesting topics arise naturally.

(Q1) The authors [10] established the critical value for a 2-patches system, it is interesting is to extend the critical value results

of 2-patches system to general n-patches system.

(Q2) The authors [10] used only white noise to describe the environmental perturbations. However, the natural growth of pop-

ulation often suffer sudden random environmental perturbations, such as epidemics, harvesting, earthquakes, hurricanes,

etc., which cannot be described by the white noise. Then how to model these sudden random environmental perturba-

tions, and what are the impacts of these sudden random environmental perturbations on the dynamics of population

models?

The aim of this paper is to study these problems. Several authors (see e.g., [11–18]) have suggested that one may use Lévy

jumps to describe the sudden random environmental perturbations. Thus in this paper, we introduce jumps into model (2) and

then obtain the following stochastic model with Lévy noise:

dxi(t) = xi(t)[ri − aixi(t)]dt +
n∑

j=1, j �=i

Di jxi(t)[x j(t) − αi jxi(t)]dt

+
m∑

j=1

σi jxi(t)dWj(t) +
∫
Z

γi(u)xi(t−)ϒ̃(dt, du), i = 1, . . . , n (3)

where xi(t−) is the left limit of xi(t). ϒ̃(dt, du) = ϒ(dt, du) − θ (du)dt, ϒ is a Poisson counting measure with characteristic mea-

sure θ on a measurable subset Z of (0, +∞) with θ (Z) < +∞. Under some simple assumptions, the almost complete parameters

analysis of system (3) is carried out in Section 2. In each case it is shown that the population in each patch is either stable in time

average or extinct, depending on the parameters of model (3), especially, depending on the intensity of the Lévy jump noise.

In Section 4, we introduce some simulation figures to validate the theoretical results. In Section 5, we give some concluding

remarks.

2. Main results

For simplicity, we introduce the following notations.

Rn
+ = {ξ ∈ Rn|ξi > 0, i = 1, . . . , n}, 〈 f (t)〉 = t−1

∫ t

0

f (s)ds, f ∗ = lim sup
t→+∞

f (t), f∗ = lim inf
t→+∞

f (t),

βi = 0.5

m∑
j=1

σ 2
i j +
∫
Z

[γi(u) − ln(1 + γi(u))]θ (du), i = 1, . . . , n;

For a symmetric n × n matrix Q = (qi j)n×n, define λ+
max(Q ) = supx∈Rn+,|x|=1 xT Qx.

Let Ā = (bi j)n×n, where bii = ai +∑n
j=1, j �=i Di jαi j > 0, bi j = −Di j < 0, i, j = 1, . . . , n, j �= i. A = det(Ā).

Ak is the k-order leading principal minor of A;

(Ak)ij is the complement minor of the element bij in Ak;

A(i)
k

is the k-order determinant by removing the ith row and the ith column of Ak;

Ai
k

denotes the k-order determinant by changing the ith column of determinant Ak to (r1, . . . , rk)
T ;

Ãi
k

represents the k-order determinant by changing the ith column of Ak to
(
β1, . . . , βk

)T
;

B
i j

k
is the k-order determinant by changing the ith column of Ak to (r1, r2, . . . , rk)

T and the jth column to
(
β1, . . . , βk

)T
;

C(i)
k

is the k-order determinant by removing the ith row and the ith column of Ck, where Ck = Ak
k
.

C̃(i)
k

is the k-order determinant by removing the ith row and the ith column of C̃k, where C̃k = Ãk
k
.

Throughout this paper, without loss of generality, we assume that

r1

β1

>
r2

β2

> · · · >
rn

βn
,

From the viewpoint of biology, this assumption means that the order of persistent ability of the species (from strongest to

weakest) is x1, x2, … , xn. As a standing hypothesis we assume that ϒ and Wj(t) are independent, j = 1, . . . , m. We also assume

that
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