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a b s t r a c t

In interconnection networks one often needs to broadcast multiple messages in parallel from

a single source so that the load at each node is minimal. With this motivation we study a

new concept of rooted level-disjoint partitions of graphs. In particular, we develop a general

construction of level-disjoint partitions for Cartesian products of graphs that is efficient both

in the number of level partitions as in the maximal height. As an example, we show that the

hypercube Q n for every dimension n = 3 · 2i or n = 4 · 2i where i ≥ 0 has n level-disjoint parti-

tions with the same root and with maximal height 3n − 2. Both the number of such partitions

and the maximal height are optimal. Moreover, we conjecture that this holds for any n ≥ 3.

© 2015 Published by Elsevier Inc.

1. Introduction

An interconnection network is often modeled as an undirected graph in which the vertices correspond to processors and

the edges correspond to communication links between the processors. Graphs which represent topological structure of such

networks are required to possess elegant properties such as small degree and diameter, high connectivity, recursive structure,

symmetry, etc. Examples of graphs with such structures are hypercubes, butterfly graphs, 2-torus graphs, etc.

Within such networks very often the data transmission is a bottleneck for possible delays. So constructing efficient broadcast-

ing schemes is one of the critical points for high computing performances. Broadcasting is an information dissemination process

that involves one node (often called a source) in a network sending pieces of information to all other nodes in the network. More

about broadcasting, gossiping and other related tasks see e.g. [3,4,5–7]. An interested reader may find some results about these

collective communication operations on hypercubes in [1,2,14].

Here we consider a communication problem that is distinct from the standard telephone model in the following rules:

(a1) data needs to reach every node (broadcasting);

(a2) at a time step, a node can receive data only from one neighbor node;

(a3) at a call, an informed node may contact to any number of uninformed neighbor nodes.
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Let us remark that without rule (a2), a vertex may receive enormous amount of data all together from its neighbors which

have to be processed due to (a1) and that can cause a delay. Also note that (a3) represents the �-port model [1] or the link-bound

model [3].

A variation to the above model where in (a3) it is required that a vertex can contact only one uninformed neighbor was

recently a subject of extensive research. Under this assumption trajectory of data transmission induces Hamiltonian paths/cycles

and each node appears in different positions in all these paths/cycles (so called mutually independent paths/cycles). In 2005,

Sun et al. [16] proved that for any vertex s, the n-dimensional hypercube Q n contains n − 1 mutually independent s-starting

Hamiltonian cycles if n = 2, 3; and n mutually independent s-starting Hamiltonian cycles if n ≥ 4. They also proved that for any

set of n − 1 distinct pairs of adjacent vertices, Q n contains n − 1 mutually independent Hamiltonian paths with these pairs of

vertices as endvertices. Mutually independent Hamiltonian paths and cycles in hypercubes with faulty edges were considered

in [8,9,12,15,17]. Beside hypercubes this concept was also considered for wrapped butterfly graphs [11], 2-torus graphs with odd

number of vertices [18], k-ary n-cubes with k being odd [10], and also in star-networks [13].

In what follows, we explain more formally our model. A level partition of a graph G is a partition S = (S0, . . . , Sh) of V(G) into

linearly ordered sets, called levels, such that Si ⊆ N(Si−1) for every 1 ≤ i ≤ h. The number h = h(S) = |S| − 1 is called the height

of S . This concept naturally occurs in many situations. In this paper we use it to represent possible ways of spreading information

across the graph. Starting at all vertices from the level S0, at each step messages are sent from all vertices of the current level

to all vertices in the next level through edges of the graph. Thus h is the number of steps needed to visit all vertices. We do not

consider which particular edges are used as this is irrelevant in our scenario. Clearly, they can be arranged so that each vertex in

level Si is informed by a single vertex from level Si−1.

In a particular case when the starting level S0 is a singleton, say S0 = {r}, we say that the level partition is rooted at r and the

vertex r is called the root of S . Rooted level partitions can be obtained, for example, from rooted spanning trees by taking the

set of vertices at distance i from the root r in the spanning tree as the ith level of the partition. In fact, a rooted level partition

corresponds to all the spanning trees with the same root and levels. Since the edge-sets of the spanning trees are of minor

importance for us, we consider them to be equivalent and we identify rooted level partitions with rooted spanning trees. Thus,

the data transmission induces spanning trees and each node appears in different heights in all these trees.

Furthermore, it is often desirable that multiple messages are sent simultaneously. At the same time we would like to

avoid overloaded vertices. With this aim we introduce the following concept. Two level partitions S = (S0, . . . , Sh(S)) and

T = (T0, . . . , Th(T )) are said to be level-disjoint if Si ∩ Ti = ∅ for every 0 ≤ i ≤ min(h(S), h(T )). Level partitions S1, . . . ,Sm are said

to be (mutually) level-disjoint if each two partitions are level-disjoint. Then we say that S1, . . . ,Sm are level-disjoint partitions,

shortly LDPs. If every partition is rooted in the same vertex r and they are level-disjoint up to the starting level {r}, we say that

S1, . . . ,Sm are level-disjoint partitions with the same root r.

LDPs allow simultaneous broadcasting of different messages (or different pieces of the same message) so that every vertex

receives at most one message in each step. In other words, broadcast messages sent along level-disjoint partitions never meet at

the same vertex at the same time if they are sent synchronously in parallel. The number of level partitions determines how many

messages can be broadcasted simultaneously while the maximal height of such level partitions determines the overall time of

the broadcasting. Hence a general aim is to construct for a given graph

• as many as possible (mutually) level-disjoint partitions; and

• with as small maximal height as possible.

In this paper we develop a general construction of LDPs for Cartesian products of graphs that is efficient both in the number

of level partitions as in the maximal height. As an example, we show that the hypercube Q n for every dimension n = 3 · 2i or

n = 4 · 2i where i ≥ 0 has n LDPs with the same root and with maximal height 3n − 2, see Theorem 2. Note that there cannot be

more than n LDPs with the same root in Q n as the first level of each rooted level partition consists of neighbors of the root and

Q n has a regular degree n. Furthermore, it can be shown (see Proposition 15) that for n LDPs with the same root in Q n at least one

partition has height at least 3n − 2. Thus both the number of LDPs and the maximal height are in this sense optimal. Moreover,

we conjecture that the above result holds for any n ≥ 3.

2. Preliminaries

Throughout the paper we restrict ourselves only to connected graphs. We use standard graph terminology and notation. For

a set S⊆V(G) let N(S) denote the set of neighbors of S in the graph G. For an integer n ≥ 1 the hypercube Q n of dimension n is the

graph with the vertex set V (Q n) = {0, 1}n and edges between every two vertices that differ in precisely one coordinate. Clearly,

Q n is bipartite, n-regular, and vertex-transitive. We denote by 0n the vertex (0, 0, . . . , 0) and for a vertex r ∈ V(Q n) we denote by

r the antipodal vertex to r; that is, the unique vertex with d(r, r) = n.

The Cartesian product G � H of graphs G and H is the graph with the vertex set V(G) × V(H) and edges between (u, v) and

(u′, v′) whenever u = u′ and vv′ ∈ E(H), or uu′ ∈ E(G) and v = v′. Note that dG�H((u, v), (u′, v′)) = dG(u, u′) + dH(v, v′) for any

(u, v), (u′, v′) ∈ V (G � H). In particular, note that for any n, m ≥ 1 the graph Q n � Qm corresponds to Qn+m.

Our construction of level partitions of G � H assumes that we have level partitions S and T of G and H, respectively. The key

idea is to alternate directions from G and H whereas in G we follow levels from S and in H we follow levels of T . However, we

must assure that all vertices are covered. For this purpose we need that in one of the level partitions S, T we can follow levels

from the current one not only to the next one but also to the previous one. We say that such level partition is bidirectional.
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