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In this paper, we propose a new class of conjugate gradient algorithms for training neural net-

works which is based on a new modified nonmonotone scheme proposed by Shi and Wang

(2011). The utilization of a nonmonotone strategy enables the training algorithm to overcome

the case where the sequence of iterates runs into the bottom of a curved narrow valley, a com-

mon occurrence in neural network training process. Our proposed class of methods ensures

sufficient descent, avoiding thereby the usual inefficient restarts and it is globally convergent

under mild conditions. Our experimental results provide evidence that the proposed non-

monotone conjugate gradient training methods are efficient, outperforming classical meth-

ods, proving more stable, efficient and reliable learning.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Artificial neural networks are parallel computational models comprised of densely interconnected, adaptive processing units,

characterized by an inherent propensity for learning from experience and also discovering new knowledge. Their excellent ca-

pability of self-learning and self-adapting have established them as vital components of many systems and are considered as

a powerful tool for pattern classification [4]. Moreover, they have been successfully applied in many applications of artificial

intelligence [2–4,23–25,42] and are often found to be more efficient and accurate than other classification techniques [17].

The standard problem of training a neural network is to iteratively adjust the weights, in order to globally minimize a mea-

sure of difference between the actual output of the network and the desired output for all examples of the training set [36]. More

mathematically, the training process can be formulated as the minimization of an error function E(w) that depends on the con-

nection weights w of the network. Conjugate gradient methods are probably the most famous iterative methods for efficiently

training neural networks due to their simplicity, numerical efficiency and their very low memory requirements. These methods

generate a sequence of weights {wk} using the iterative formula

wk+1 = wk + ηkdk, k = 0, 1, . . . , (1.1)

where k is the current iteration usually called epoch, w0 ∈ R
n is a given initial point, ηk > 0 is the learning rate and dk is a descent

search direction defined by

dk =
{−g0, if k = 0;

−gk + βkdk−1, otherwise,
(1.2)
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where gk is the gradient of E at wk which can be easily obtained by means of back propagation of errors through the network

layers and βk is a scalar. There have been proposed several choices for βk which give rise to distinct conjugate gradient meth-

ods. The most well known conjugate gradient methods include the Fletcher–Reeves (FR) method [9], the Hestenes–Stiefel (HS)

method [14] and the Polak–Ribière (PR) method [33] whose update parameters are respectively specified as follows:

βHS
k = gT

k
yk−1

yT
k−1

dk−1

, βFR
k = ‖gk‖2

‖gk−1‖2
, βPR

k = gT
k
yk−1

‖gk−1‖2
,

where yk−1 = gk − gk−1 and ‖ · ‖ denotes the Euclidean norm. In the literature, there have been devoted many efforts to study and

investigate the numerical efficiency and convergence properties of conjugate gradient methods (see [7,12,28] and the references

therein).

Unfortunately these training methods, cannot guarantee to generate descent directions, therefore the use of restarts are em-

ployed in order to guarantee convergence. Nevertheless, there is also a worry with restart algorithms that restarts may be trig-

gered too often; thus degrading the overall efficiency and robustness of the training process [27]. Furthermore, most classical

conjugate gradient methods have the drawback of not being globally convergent for general functions and as a result they can

cycle infinitely without presenting any substantial progress [34]. To overcome these difficulties, Chen and Liu [5] based on the

works [45,46] proposed a new class of conjugate gradient methods by modifying the search direction (1.2) in the following way:

dk = −
(

1 + βk

gT
k
dk−1

‖gk‖
)

gk + βkdk−1.

An attractive property of this class is that the property gT
k

dk = −‖gk‖ always holds. Moreover, if βk is specified by an existing

conjugate gradient formula, we obtain the corresponding modified conjugate gradient method. Along this line, many related

conjugate gradient methods have been extensively studied which possess global convergence for general functions and are also

computationally competitive to classical methods [5,20,43,44]. On the basis of this idea, Livieris and Pintelas [19,21,22] proposed

some descent conjugate gradient training algorithms providing some promising results. Based on their numerical experiments

the authors concluded that the sufficient descent property led to a significant improvement of the efficiency of the training

process.

However, the global convergence property ensures that starting from any initial point (weight) the training method will reach

a minimizer but not necessarily a global minimum. This leads us to the conclusion that even if an algorithm is globally conver-

gent, there is no guarantee that the method will efficiently explore the error surface since it may be trapped in a local minimum

early. This is primarily caused by the fact that traditional conjugate gradient algorithms are monotone. In particular, enforcing

monotonicity may considerably reduce the rate of convergence when the iteration is trapped near a narrow curved valley, which

can result in very short steps [40]. Therefore, it might be advantageous to allow the iterative sequence to occasionally generate

points with nonmonotone objective values. Grippo et al. [11] proposed a nonmonotone learning strategy that exploits the ac-

cumulated information with regard to the most recent values of the function. The philosophy behind nonmonotone strategy is

that, many times, the first choice of a trial point by a minimization algorithm hides a lot of wisdom about the problem structure

and that such knowledge can be destroyed by the decrease imposition. On the basis of this idea, many researchers [6,38,40] have

proposed new nonmonotone schemes and some encouraging numerical results have been reported [29–32] when nonmonotone

algorithms were applied to difficult nonlinear problems.

Motivated by the previous works, we propose a new class of conjugate gradient methods for training neural networks which

ensures sufficient descent independent of the accuracy of the line search. Moreover, our proposed methods utilize a new modified

nonmonotone strategy proposed by Shi and Wang [38] and they are globally convergent, under mild conditions. Our experimen-

tal results indicate that the proposed class of training methods are efficient and have a potential to significantly enhance the

computational efficiency and robustness of the training process.

The remainder of this paper is organized as follows: In Section 2, we present the modified nonmonotone line search and our

proposed class of conjugate gradient training algorithms and Section 3 presents the global convergence analysis. The numer-

ical experiments are reported in Section 4 using the performance profiles Dolan and Morè [8]. Finally, Section 5 presents our

concluding remarks and our proposals for future research.

2. Nonmonotone modified conjugate gradient training algorithm

Recently, Shi and Wang [38] proposed a modification of nonmonotone Armijo line search as follows:

Modified nonmonotone Armijo line search. Given a nonnegative integer M, the index m(k) is defined by

m(0) = 0, 0 ≤ m(k) ≤ min[m(k − 1), M], k ≥ 1.

Set scalars δk, ρ , μ, Lk > 0 and σ with δk = − gT
k

dk

Lk‖dk‖2 , σ ∈ (0, 1
2 ), ρ ∈ (0, 1) and μ ∈ [0, 2). Let ηk be the largest one in

{δk, δkρ, δkρ
2, . . .} such that

E(wk + ηkdk) − max
0≤ j≤m(k)

[Ek− j] ≤ σηk

[
gT

k dk + 1

2
ηkμLk‖dk‖2

]
, (2.1)



Download	English	Version:

https://daneshyari.com/en/article/4626533

Download	Persian	Version:

https://daneshyari.com/article/4626533

Daneshyari.com

https://daneshyari.com/en/article/4626533
https://daneshyari.com/article/4626533
https://daneshyari.com/

