Contents lists available at ScienceDirect

# Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

## On new subclass of meromorphic close-to-convex functions

### Jin-Dong Li<sup>a,b,\*</sup>, Guang-Xin Huang<sup>a,b</sup>

<sup>a</sup> Department of Mathematics,Chengdu University of Technology, Chengdu 610059, PR China <sup>b</sup> Geomathematics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610059, PR China

#### ARTICLE INFO

*Keywords:* Meromorphic close-to-convex functions Differential subordination

### ABSTRACT

In the present paper, we introduce and investigate a certain new subclass  $\mathcal{MK}(\lambda, t, A, B)$  of meromorphic close-to-convex functions. Some results such as inclusion relationship, coefficient inequality and some property for this class are derived. The results obtained here are extension of earlier known work.

© 2015 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\Sigma$  denote the class of functions *f* of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
(1.1)

which are analytic in the punctured open unit disk  $\mathbb{U}^* := \{z : z \in \mathbb{C}, 0 < |z| < 1\} =: \mathbb{U} \setminus \{0\}$ , where  $\mathbb{U}$  is an open unit disk. Let  $\mathcal{P}$  denote the class of functions p of the form

$$p(z) = \frac{1}{z} + \sum_{n=1}^{\infty} p_n z^n$$

which are analytic in  $\mathbb{U}$  and satisfy the condition  $\operatorname{Re}(p(z)) > 0$   $(z \in \mathbb{U})$ .

A function  $f \in \Sigma$  is said to be in the class  $\mathcal{MS}^*(\alpha)$  of meromorphic starlike functions of order  $\alpha$  if it satisfies the inequality

$$Re\left(-\frac{zf'(z)}{f(z)}
ight) > \alpha \ (z \in \mathbb{U}; 0 \le \alpha < 1).$$

Moreover, a function  $f \in \Sigma$  is said to be in the class  $\mathcal{MC}$  of meromorphic close-to-convex functions if it satisfies the condition

$$Re\left(-\frac{zf'(z)}{g(z)}\right) > 0 \ (z \in \mathbb{U}, g \in \mathcal{MS}^*(0) =: \mathcal{MS}^*).$$

Let  $0 \le \alpha < 1$  and  $\beta > 1$ . A function  $f \in \Sigma$  is said to be in the class  $MS^*(\alpha, \beta)$  of meromorphic starlike functions of order  $\alpha$  if it satisfies the inequality

$$\alpha < \operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) < \beta \ (z \in \mathbb{U}).$$

\* Corresponding author. Tel.: +8602889397564.

E-mail addresses: jd-li86cdut@163.com (J.-D. Li), cdut.hgx@163.com (G.-X. Huang).

http://dx.doi.org/10.1016/j.amc.2015.05.075 0096-3003/© 2015 Elsevier Inc. All rights reserved.





霐

Let f and g be analytic in U. Then f is subordinate to g, written  $f \prec g$ , if there exists an analytic function  $\omega(z)$  with  $\omega(0) = 0$  and  $|\omega(z)| < 1$  such that  $f(z) = g(\omega(z))$ . Indeed, it is known that

$$f \prec g \ (z \in \mathbb{U}) \Rightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Furthermore, if the function g is univalent in  $\mathbb{U}$ , then we have the following equivalence:

$$f \prec g \ (z \in \mathbb{U}) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For some recent investigations on meromorphic functions and related functions, see (for example) the earlier works [1–4] and see the close-related recent works [5–7]. For some recent investigations on close-to-convex functions, see the earlier work [8,9].

Recently, Wang et al. [10] introduced and discussed the class  $\mathcal{MK}$  of meromorphic functions  $f \in \Sigma$  which satisfies the inequality

$$Re\left(\frac{f'(z)}{g(z)g(-z)}\right) > 0 \ (z \in \mathbb{U}).$$

$$(1.2)$$

where  $g(z) \in \mathcal{MS}^*(\frac{1}{2})$ .

More recently, by means of subordination, Sim and Kwon [11] discussed a subclass  $\Sigma(A, B)$  of the class  $\mathcal{MK}$ . A function is said be in the class  $\Sigma(A, B)$  if it satisfies the following subordination relation:

$$\frac{f'(z)}{g(z)g(-z)} \prec \frac{1+Az}{1+Bz} \tag{1.3}$$

where  $-1 \le B < A \le 1$  and  $g(z) \in \mathcal{MS}^*(\frac{1}{2})$ . Here, the assumption that g(z) is meromorphic starlike function of order  $\frac{1}{2}$  makes the function -zg(z)g(-z) meromorphic starlike. So, instead of g(z)g(-z) in (1.2) and (1.3), we can consider  $tg(z)g(tz), 0 < |t| \le 1$ , because if  $g(z) \in \mathcal{MS}^*(\frac{1}{2})$ , then tg(z)g(tz) is also a meromorphic starlike function, which motivates us to define a new subclass  $\mathcal{MK}(\lambda, t, A, B)$  of meromorphic close-to-convex functions as follows.

**Definition 1.1.** A function  $f \in \Sigma$  is said to be in the class  $\mathcal{MK}(\lambda, t, A, B)$  if it satisfies the subordination condition

$$\frac{(1+2\lambda)f'(z)+\lambda zf''(z)}{tg(z)g(tz)} \prec \frac{1+Az}{1+Bz}$$

where  $\lambda \ge 0$ ;  $0 < |t| \le 1$ ,  $-1 \le B < A \le 1$  and  $g(z) \in \mathcal{MS}^*(\frac{1}{2}, \frac{\beta+1}{2})$  with  $\beta > \frac{1}{\lambda} + 1(\lambda > 0)$ .

In this paper, we aim at proving such results as inclusion relationships, coefficient inequalities, and property for the class  $\mathcal{MK}(\lambda, t, A, B).$ 

#### 2. Properties of meromorphic starlike functions

We begin by proving the following result of meromorphic starlike functions.

**Theorem 2.1.** Suppose that  $\Phi \in \mathcal{MS}^*(\alpha_1, \beta_1)$  and  $\Psi \in \mathcal{MS}^*(\alpha_2, \beta_2)$  with  $0 \le \alpha_1 + \alpha_2 - 1 < 1$ . Then

$$zt_1t_2\Phi(t_1z)\Psi(t_2z) \in \mathcal{MS}^*(\alpha_1 + \alpha_2 - 1, \beta_1 + \beta_2 - 1)$$

where  $0 < |t_1|, |t_2| \le 1$ .

**Proof.** Let  $\Phi \in \mathcal{MS}^*(\alpha_1, \beta_1)$  and  $\Psi \in \mathcal{MS}^*(\alpha_2, \beta_2)$  with  $0 \le \alpha_1 + \alpha_2 - 1 < 1$ . Then

$$\alpha_1 < Re\left(-\frac{t_{1Z}\Phi'(t_{1Z})}{\Phi(t_{1Z})}\right) < \beta_1$$
$$\alpha_2 < Re\left(-\frac{t_{2Z}\Psi'(t_{2Z})}{\Psi(t_{2Z})}\right) < \beta_2$$

Next, we suppose that  $h(z) = zt_1t_2\Phi(t_1z)\Psi(t_2z)$ . Then, we easily find that

$$-\frac{zh'(z)}{h(z)} = -1 + \frac{-t_1 z \Phi'(t_1 z)}{\Phi(t_1 z)} + \frac{-t_2 z \Psi'(t_2 z)}{\Psi(t_2 z)}$$

It follows that  $\alpha_1 + \alpha_2 - 1 < Re(-\frac{zh'(z)}{h(z)}) < \beta_1 + \beta_2 - 1$ . The proof of Theorem 2.1 is thus completed.  $\Box$ 

**Theorem 2.2.** Let  $g(z) \in \mathcal{MS}^*(\frac{1}{2}, \frac{\beta+1}{2})$  and  $0 < |t| \le 1$ . Then  $ztg(z)g(tz) \in \mathcal{MS}^*(0, \beta)$ 

**Proof.** By setting  $\Phi(z) = g(z), \Psi(z) = g(tz), \alpha_1 = \alpha_2 = \frac{1}{2}, t_1 = 1$  and  $\beta_1 = \beta_2 = \frac{\beta+1}{2}$ , we can get the assertion of Theorem 2.2. □

In order to derive our next results, we need the following lemmas.

Download English Version:

https://daneshyari.com/en/article/4626535

Download Persian Version:

https://daneshyari.com/article/4626535

Daneshyari.com