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a b s t r a c t

Stability of the solution to neutral stochastic functional differential equation (NSFDE) has re-

ceived a great deal of attention, but there is so far little work on stability of numerical solution.

To close the gap, the paper develops new criteria on stability of numerical solutions to linear

and nonlinear NSFDEs. We show that the backward Euler–Maruyama(EM) method can repro-

duce the almost surely exponential stability of the exact solution to highly nonlinear NSFDE,

and EM method can preserve the almost surely exponential stability of NSFDE with linear

growing coefficients. Two examples are provided to illustrate the main results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Neutral stochastic functional differential equations have received a great deal of attention, research efforts have been devoted

to stability of the analytical solutions(see [1–6]). Unfortunately, explicit solutions can rarely be obtained, especially highly non-

linear NSFDEs. So numerical solutions have obtained an increasing attention ([7–10]). The existing results mostly are concerned

with convergence of numerical solutions to NSFDEs. For example, Wu and Mao [11] studied the convergence of EM approxi-

mation for NSFDE with the linear growth coefficients. Milošević [12] studied convergence in probability of the EM approximate

solutions to nonlinear neutral SDDEs under the Khasminskii-type conditions. Zhou and Fang [13] established convergence in

probability of the EM approximate solutions for highly nonlinear NSFDEs.

Stability theory of numerical solution is one of the key problems in numerical analysis. However, the study on stability of

numerical method for neutral stochastic differential systems is relatively scarce due to their technical difficulties, which is the

main topic of the present paper. Recently, Milošević [14] showed that almost sure exponential stability of solutions to highly

nonlinear neutral stochastic differential equations with time-dependent delay. To the best knowledge of authors, there is no

work on the stability of numerical solution to NSFDE. To close the gap, the paper develops new criteria on stability of numerical

solution referring to the technique of stability of the analytical solution. In the paper, we first show that nonlinear NSFDE is

almost surely exponentially stable, and EM method can preserve almost surely exponential stability of the analytical solution

to NSFDE with the linear growth coefficients. We shall also establish a new criterion on almost surely exponential stability of

numerical solution to highly nonlinear NSFDE, with the help of the technique used in stability analysis of the exact solution.

The structure of the paper is as follows: In the next section, after introducing some necessary notations and assumptions,

we shall prove that the existence-and-uniqueness of the global solution and almost surely exponential stability of the exact

solution to NSFDE under polynomial growth conditions. Section 3 proves that EM method can preserve almost surely exponential

stability of the analytical solution for NSFDE with the linear growth coefficients. Section 4 shows that the backward EM scheme
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may reproduce almost surely exponential stability to highly nonlinear NSFDEs. In Section 5, one highly nonlinear example is

considered to illustrate the main theory, which implies our results are very general, so that a wide class of nonlinear systems

obey our criteria.

2. The global solution

Throughout this paper, unless otherwise specified, let |x| be the Euclidean norm in x ∈ R
n. If A is a vector or matrix, its trans-

pose is denoted by AT. If A is a matrix, its trace norm is denoted by |A| =
√

trace(AT A), while its operator norm is denoted by

‖A‖ = sup{|Ax| : |x| = 1} (without any confusion with ‖ϕ‖). Let be R+ = [0, ∞) and for τ > 0, we shall denote by C([−τ, 0]; R
n)

the family of continuous functions ϕ from [−τ, 0] to R
n with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ )|. For simplicity, we also have to

denote by a ∧ b = min{a, b}, a ∨ b = max{a, b}.
Let (�,F, P) be a complete probability space with a filtration {Ft}t≥0, satisfying the usual conditions (i.e., it is increasing and

right continuous and F0 contains all P-null sets). Denoted by Cb
F0

([−τ, 0]; R
n) the family of all F0-measurable C([−τ, 0]; R

n)-

valued random variables ξ = {ξ (θ ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0 E|ξ (θ )|2 < +∞. Let w(t) be a scalar Brownian motion

defined on the probability space.

Consider an n-dimensional neutral stochastic functional differential equation

d[x(t) − u(xt )] = f (x(t), xt )dt + g(x(t), xt )dw(t) (2.1)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0]; R
n), xt = {x(t + θ ) : −τ ≤ θ ≤ 0}, which is regarded as a C([−τ, 0]; R

n)-valued

stochastic process. Moreover, u : C([−τ, 0]; R
n) −→ R

n, f : R
n × C([−τ, 0]; R

n) −→ R
n,g : R

n × C([−τ, 0]; R
n) −→ R

n are Borel-

measurable functions. For the convenience, let x̃(t) = x(t) − u(xt ).

For the purpose of the stability, we assume that f (0, 0) = g(0, 0) = 0 and u(0) = 0. Therefore Eq. (2.1) admits a trivial solution

x(t; 0) = 0 corresponding to the trivial data x0 = 0. In this paper, we shall only discuss almost surely exponential stability of the

trivial solution. To guarantee the existence-and-uniqueness and stability of the global solution, we need to impose the following

conditions on the drift coefficient f and the diffusion coefficient g.

(H1). (The local Lipschitz condition): For each integer B ≥ 1, there is a positive constant KB such that

| f (ϕ1(0), ϕ1) − f (ϕ2(0), ϕ2)|2 ∨ |g(ϕ1(0), ϕ1) − g(ϕ2(0), ϕ2)|2

≤ KB(|ϕ1(0) − ϕ2(0)|2 + ‖ϕ1 − ϕ2‖2)

for any ϕi(0) ∈ R
n, ϕi ∈ C([−τ, 0]; R

n) with |ϕi(0)| ∨ ‖ϕi‖ ≤ B(i = 1, 2).

(H2). (The polynomial growth conditions): Assume that there exist positive constants α, a0, â, ā, ã, b0, b̄, b̃ such that

2〈ϕ̃(0), f (ϕ(0), ϕ)〉 ≤ −a0|ϕ(0)|2 + â

τ

∫ 0

−τ
|ϕ(θ )|2dθ + ā

τ

∫ 0

−τ
|ϕ(θ )|α+2dθ − ã|ϕ(0)|α+2, (2.2)

|g(ϕ(0), ϕ)|2 ≤ b0|ϕ(0)|2 + b̄

τ

∫ 0

−τ
|ϕ(θ )|α+2dθ + b̃|ϕ(0)|α+2, (2.3)

for any ϕ(0) ∈ R
n, ϕ ∈ C([−τ, 0]; R

n), ϕ̃(0) = ϕ(0) − u(ϕ).

(H3). (The contractive condition): Assume that there exist a constant κ(0 < κ < 1) such that

|u(ϕ) − u(ψ)|2 ≤ κ

τ

∫ 0

−τ
|ϕ(θ ) − ψ(θ )|2dθ (2.4)

for any ϕ,ψ ∈ C([−τ, 0]; R
n), moreover let u(0) = 0.

Clearly,
∫ 0
−τ |ϕ(θ ) − ψ(θ )|2dθ ≤ τ sup

−τ≤θ≤0

|ϕ(θ ) − ψ(θ )|2 = τ‖ϕ − ψ‖, that is,|u(ϕ) − u(ψ)|2 ≤ κ‖ϕ − ψ‖2.

Theorem 2.1. Assume that (H1)–(H3) hold with a0 > b0 + â, ã > ā + b̄ + b̃. Then for any initial data ξ ∈ Cb
F0

((−τ, 0]; R
n), there

almost surely exists a unique global solution x(t) to Eq. (2.1) on t > −τ .

Proof. Under (H1), applying the standing truncation technique [see Mao[15],Theorem 3.15, P91] to Eq. (2.1) for any initial data

ξ ∈ Cb
F0

((−τ, 0]; R
n), there exists a unique maximal local strong solution to Eq. (2.1) on −τ < t < σe, where σ e is the explosion

time. To show this solution is global, we only need to show that σe = ∞ a.s. Let h0 > 0 be sufficiently large such that h0 ≥ |x̃0|.
For each integer h ≥ h0, define the stopping time

σh = inf{t ∈ [0, σe) : |x̃(t)| ≥ h}, (h ∈ N), (2.5)

where throughout this paper, we set inf ∅ = ∞(as usual, ∅ = the empty set). Obviously, σ h is an increasing function with h,

so σ h → σ∞ ≤ σ e(h → ∞). If we can show that σ∞ = ∞ a.s., then σe = ∞ a.s. In other words, we only need to prove that

P(σh ≤ t) → 0(h → ∞, t > 0).
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