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a b s t r a c t

In this paper, we investigate the stochastic permanence and extinction of a stochastic ratio-

dependent prey–predator model controlled by a Markov chain. In the permanent case we

estimate the superior limit and the inferior limit of the average in time of the sample path

of the solution. The boundaries are related to the stationary probability distribution of the

Markov chain and the parameters of the subsystems. Finally, we illustrate our main results by

two examples and some numerical experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The dynamic relationship between predators and their preys has been universal existence in both ecology and mathematical

ecology [13]. Lotka and Volterra [30–32,48] investigated the famous prey–predator model, respectively,⎧⎪⎨
⎪⎩

dx

dt
= a1x − c1xy,

dy

dt
= −a2y + c2xy,

(1.1)

where x(t) and y(t) represent the population density of prey species (for example, rabbits) and predator species (for example,

foxes) at time t, parameters a1, a2, c1, c2 are all positive constants describing the interaction of the two species. Intra-species con-

flict and competition are part of nature in most species, then prey–predator Lotka–Volterra model with intra-species competition

becomes⎧⎪⎨
⎪⎩

dx

dt
= x(a1 − b1x − c1y),

dy

dt
= y(−a2 − b2y + c2x),

(1.2)

where the positive constants b1, b2 represent the effect of one species on the other. It is well known that the solution of (1.2) is

asymptotically stable.
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Both models (1.1) and (1.2) assume the prey biomass is enough and an individual predator consumes the prey with functional

response of type c1x . When predators are faced with increasing local density of their prey, they often respond by changing

their consumption rate. The idea of a functional response was introduced by Solomon and explored in detail by Holling later.

Holling [16–18] recognized three types of functional response, i.e., Hollings type I of form αx, Hollings type II of form αx
β+x

and

Hollings type III of form αx2

β+x2 . Furthermore, Bazykin et al. [8] (page 67) and Mcgehee et al. [41] investigated the rich dynamics of

prey–predator model with intraspecific competition basing on Holling type II response function, gave the interesting coexistence

phenomenon of two attractors and analyzed the bifurcation of limit circles and equilibriums.

When predators have to search for food and therefore have to share or compete for food, a ratio-dependent functional re-

sponse is more reasonable and has been strongly supported by numerous fields, laboratory experiments and observations [1–

4,14]. Based on the Holling type II function, Arditi and Ginzburg [1] first proposed a ratio-dependent functional response of form
αx

x+ey and obtained the following ratio-dependent prey–predator model⎧⎪⎨
⎪⎩

dx

dt
= a1x − b1x2 − c1xy

x + ey
,

dy

dt
= −a2y + c2xy

x + ey
,

(1.3)

where parameters c1, c2, e are all positive constants, representing capturing rate, conversion rate and half capturing saturation

constant, respectively. A major mathematical difficulty with ratio-dependent functional response is that the concerned model

fails to satisfy the continuity condition at origin [34]. Recently, many authors have drawn their attention on (1.3) and discussed

its rich dynamical behavior, for example, [9,10,19,26].

The papers mentioned above are all deterministic models which do not incorporate the effect of either environmental fluc-

tuations or demographic stochasticity. In fact, both environmental fluctuations and demographic stochasticity are important

components for population systems. May [40] has pointed out that all of parameters in the population model are not constants

but exhibit random fluctuations. Thus most of natural phenomena do not follow strictly deterministic laws but rather oscillate

randomly around some average values [22]. Therefore stochastic models play significant roles to study the dynamics of inter-

acting populations under realistic situation. However, there is no unified approach to formulate a stochastic model. Mandal and

Banerjee [34] divided the available formalisms into two broad classes, one is white noise added models and the other is Marko-

vian chain driven models (discrete or continuous time).

Recently, many authors have paid their attention to stochastic prey–predator models with white noise and revealed how the

noise affect the population systems, for example, [6,20,21,23,34,44]. Especially, Arnold et al. [6] pioneered the investigation of

stochastic prey–predator model⎧⎪⎨
⎪⎩

dx

dt
= x(a1 − b1x − c1y)dt + σ1xdB1(t),

dy

dt
= y(−a2 − b2y + c2x)dt + σ2ydB2(t),

(1.4)

and studied the properties of sample paths. Basing on Eq. (1.3), Ji et al. in [20,21,23] investigated stochastic differential equation

(SDE) ⎧⎪⎨
⎪⎩

dx = x

[
a1 − b1x − c1y

x + ey

]
dt + σ1xdB1(t),

dy = y

[
−a2 + c2x

x + ey

]
dt + σ2ydB2(t).

(1.5)

They obtained the stationary distribution and some asymptotic properties. Moreover, Nguyen and Ta in [44] introduced the

intra-specific competition into (1.5),⎧⎪⎨
⎪⎩

dx = x

[
a1 − b1x − c1y

x + ey

]
dt + σ1xdB1(t),

dy = y

[
−a2 − b2y + c2x

x + ey

]
dt + σ2ydB2(t),

(1.6)

then they considered the corresponding non-autonomous stochastic system and estimated the upper-growth rates and the ex-

ponential death rates of the population. As a matter of fact, many authors have studied the prey–predator system perturbed by

the white noise but we don’t mention them in details.

Let us now take a further step to add the other type of environmental noise. This noise means a random switching between

two or more environmental regimes distinguished by factors such as nutrition or rainfall [11,42]. The stochastic differential equa-

tions driven by a continuous-time Markov chain have been used to model the population systems [27,28,33,38,47,49] with this

type of noise. Suppose the Markov chain r(t) on the state space S = {1, 2, . . . , N} controls the switching between the environ-

mental regimes. Then the prey–predator model with two types of noise can therefore be described by the following stochastic
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