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In this paper, a primal-dual quasi interior-point algorithm for inequality constrained optimiza-

tion problems is presented. At each iteration, the algorithm solves only two or three reduced

systems of linear equations with the same coefficient matrix. The algorithm starts from an

arbitrarily initial point. Then after finite iterations, the iteration points enter into the interior

of the feasible region and the objective function is monotonically decreasing. Furthermore,

the proposed algorithm is proved to possess global and superlinear convergence under mild

conditions including a weak assumption of positive definiteness. Finally, some encouraging

preliminary computational results are reported.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following nonlinear inequality constrained optimization problem

min f (x)
s.t. gi(x) ≤ 0, i ∈ I = {1, 2, . . . , m}, (1.1)

where f : R
n → R and gi : R

n → R, i ∈ I are all continuously differentiable. The Karush–Kuhn–Tucker (KKT) first order necessary

conditions of optimality for problem (1.1) are

∇ f (x) +
∑
i∈I

λi∇gi(x) = 0; λigi(x) = 0, λi ≥ 0, gi(x) ≤ 0, i ∈ I. (1.2)

Applying a quasi–Newton iteration to the solution of the equations in (1.2), one can solve the following system of linear equations

(SLE) in (d0, λ0):

Hd0 +
∑
i∈I

λ0
i ∇gi(x) = −∇ f (x); zi∇gi(x)T d0 + λ0

i gi(x) = 0, i ∈ I, (1.3)

✩ Project supported by NSFC (grant no. 11271086), and Natural Science Foundation of Guangxi Province (grant nos. 2014GXNSFFA118001 and

2011GXNSFD018022).
∗ Corresponding author. Tel.: +867752668690.

E-mail address: jianjb@gxu.edu.cn (J.-B. Jian).

URL: http://jians.gxu.edu.cn (J.-B. Jian)

http://dx.doi.org/10.1016/j.amc.2015.05.091

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.05.091
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.05.091&domain=pdf
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004607
mailto:jianjb@gxu.edu.cn
http://jians.gxu.edu.cn
http://dx.doi.org/10.1016/j.amc.2015.05.091


J.-B. Jian et al. / Applied Mathematics and Computation 266 (2015) 560–578 561

where H is an estimate of the Hessian of the Lagrangian function L(x, λ) := f (x) + ∑
i∈I λigi(x), x is the current estimate of a

solution x∗, and x + d0 and λ0 are the next estimate of x∗ and the KKT multiplier vector, respectively. It can be shown that if H

is positive definite, each zi is strictly positive, and x satisfies the strict inequality constraints, i.e, gi(x) < 0 for all i, then d0 is a

descent direction for both the object function f and the Lagrangian function L(·, λ0). However, d0 may not be sufficient feasible for

the feasible set of problem (1.1). Thus, to obtain an updated direction d1 for d0, by perturbing the right-hand side of the second

equation of (1.3) by −zi‖d0‖ν , Panier et al. [1] solve an additionally SLE with the form of

Hd +
m∑

i=1

λi∇gi(x) = −∇ f (x); zi∇gi(x)T d + λigi(x) = −zi‖d0‖ν , i ∈ I, (1.4)

where constant ν > 2. Then, the search direction d̄ is yielded by a convex combination of d0 and d1 so that d̄ is both descent and

sufficiently feasible. Furthermore, to avoid the Maratos effect [2], a higher order correction direction d̃ is obtained by solving the

following linear least square problem (LSP):

min
d∈Rn

{‖d‖2/2 : gi(x + d̄) + ∇gi(x)T d = −ψ, i ∈ Ix}, (1.5)

where Ix is an approximate active set at x, and ψ is a scalar variable.

Nevertheless, the algorithm [1] has two difficulties that need to be further studied. First, the system (1.4) may become ill-

conditioned when some multiplier zk
i

corresponding to a nearly active constraint gi becomes very small. Although the algorithm

[1] was proven to converge eventually to KKT points for (1.1), it may get bogged down over a significant number of iterations

in the neighborhood of some non-KKT stationary points, i.e., not all multipliers corresponding to those stationary points are

nonnegative (these stationary points may be constrained local maxima or constrained saddle points). Second, in the analysis of

global convergence, they require an additional assumption that the number of stationary points is finite. Gao et al. [3] attempted

to solve the latter difficulty by solving an extra SLE, and assuming that the sequence of the approximate multipliers is bounded.

To further improve the algorithm [1], Bakhtiari and Tits [4] proposed a simple primal-dual feasible interior-point method.

Here, a suitable vector of barrier parameters is introduced, i.e., a different barrier parameter for each constraint; to yield a search

direction and a correction direction, two SLEs and one LSP need to be solved. Particularly, in the second system, the idea of

interior-point methods is adopted to construct the vector of barrier parameters. Without the assumption of isolatedness of the

stationary points and the positive definiteness on matrix Hk, the algorithm of [4] achieves global convergence and two-step

superlinear convergence. Another improvement of the algorithm [4] is that it allows the initial point to lie on the boundary of

the feasible set.

However, at least four problems are worthy of further research on the algorithm [4]. Firstly, the KKT conditions of the LSP can

be formulated as a system of linear equalities, but its coefficient matrix is different from those of the previous two SLEs, which

makes the computational expense relatively higher. Secondly, the algorithm is only two-step superlinearly convergent. The third

problem is that the scale of the SLEs (n + m variables and n + m equations) is large since all the constraints and their gradients

are included. At last, the initial point must lie on the feasible set, while computing a feasible point is generally a nontrivial work

for some practical problems.

Zhu [5] improved the algorithm [4] and overcame the first problem mentioned above, but the additional assumption of

isolatedness of the stationary points and the uniformly positive definiteness on the sequence {Hk} are still required.

By further modifying the algorithms [4,5], Jian and Pan [6] proposed a feasible descent primal-dual interior-point algorithm

for the solution of problem (1.1). Here, the former three problems stated above are solved successfully, but the fourth one is

unsolved, i.e, a feasible point is required to initialize the algorithm. In fact, such a difficulty not only appears here but also in

many other methods of feasible type, such as feasible sequential quadratic programming [7] and feasible sequential quadratically

constrained quadratic programming [8]. In order to overcome such kind of difficulty in a more general context, Jian and his

collaborators proposed a method of strongly sub-feasible directions (MSSFD), see [9, Chapter 2] and [10–13]. The main features

of the MSSFD can be described as follows: the initial point can be chosen arbitrarily without using any penalty parameters or

penalty functions; the feasibility of a constraint is maintained through the iterations once it is reached, and therefore the number

of feasible constraints is nondecreasing; the operations of initialization (Phase I) and optimization (Phase II) can be well unified

automatically. Furthermore, if the search directions are constructed elaborately, after finite iterations, the iteration points can all

get into the feasible set.

In this paper, based on the primal-dual interior-point algorithm [4] and the idea of the MSSFD, we propose a new algorithm

called primal-dual quasi interior-point algorithm. First, motivated by the identification technique of active set [14], we propose

a new working set that has less elements. Therefore the associated SLE possesses smaller scale and requires less computational

cost than those [4,14].

Second, by combining the new working set with the idea of MSSFD, at each iteration, we solve three or two SLEs with the

form of(
Hk Ak

ZkAT
k

Bk

)(
d

λ

)
=

(
−∇ f (xk)

μ

)
or

(
0
μ

)
, (1.6)

where the definitions of the matrices Hk, Zk, Bk and Ak are described in Section 2.

Third, since the analysis of global convergence requires that the components of Zk := diag(zk
i
) corresponding to the active

constraints are uniformly bounded from below, how to design a suitable updating rule for zk is of great significance. Actually, one
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