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a b s t r a c t

In this paper, numerical methods based on quasilinearization and Haar and Legendre wavelets

to solve a class of semi linear parabolic initial boundary value problem (SPIBVP) have been

presented. The Haar and Legendre wavelet methods have been successfully combined with

quasilinearization to solve SPIBVP efficiently. The presented numerical scheme has been illus-

trated using appropriate examples including Fisher equation and the obtained results show

that the proposed numerical scheme is robust and easy to apply.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper discusses the numerical method based on wavelet for semi linear parabolic initial boundary value prob-

lem(SPIBVP)

∂u

∂t
= ∂2u

∂x2
+ h(x, t, u) in Q, u|∂pQ = φ, (1.1)

where Q = (0, 1) × (0, T ) and ∂pQ = ∂Q\((0, 1) × {T}) denotes the parabolic boundary of Q. Here h : [0, 1] × R → R is con-

tinuous and φ is the restriction of u on ∂pQ where � ∈ C2,1(Q ). Eq. (1.1) represents various mathematical models in mathematical

biology, plasma physics and quantum mechanics, to name a few. Considerable attention has been directed towards the devel-

opment numerical scheme for partial differential equation using operational matrix wavelet methods [1,3–5,12–14,21,22,24].

This method has been systematically studied for linear partial differential equations [1,12,13,21,22], however very few works

have been done to solve nonlinear partial differential equations [3–5]. It is also observed that the operational matrix wavelet

methods for the non linear partial differential equations in the recent literature fall into two groups: methods for initial value

problems [14,24] and the methods for initial and boundary value problems [3–6,15,17]. By assuming the existence and unique-

ness of solution as well as the convergence of the quasilinearization scheme, classical quasilinearization based operational ma-

trix wavelet method for various types of ordinary and partial differential equations are studied in [7–9,17–19] and [3,5,6,10,15],

respectively. For the time dependent nonlinear partial differential equations, with initial and boundary condition, most of the

wavelet based techniques are used only for approximating derivatives with respect to space variables. The time derivatives are

always approximated using finite difference approach. In the present work, a new numerical scheme to solve a class of SPIBVPs

has been proposed with systematic convergence analysis for quasilinearization. However, in contrast to the methods discussed

in [3,5,6,10,15], the new scheme approximate even the derivatives with respect to time using wavelet techniques. Two numerical

schemes have been developed by combining classical quasilinearization with two types of wavelets, namely Haar and Legendre
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wavelets. Numerical simulations show that the proposed approach obtain better accuracy than the results in recent literature.

The convergence analysis for quasilinearization generalises a recent result of Lakshmikantham et al. [11] as well as simplifies the

result of Buică and Precup [2].

The organization of the paper is as follows. In Section 2, we provide a generalised version of the recent result of Lakshmikan-

tham et al. [11]. This section also provides the existence and uniqueness of the solution of SPIBVP and the convergence of the

generalised quasilinearization method. Section 3 explains the extension of Haar and Legendre wavelet collocation methods in

combination with quasilinearization for SPIBVP. The proposed methods have been illustrated in Section 4 by applying to various

examples including Fisher and Newell–Whitehead–Segel type equations. The obtained numerical results are also compared with

other numerical results obtained in [15,20,25] using finite difference based Haar wavelet method(FHWM), variational iterative

method(VIM), uniform cubic B-spline (UCBS), extended cubic uniform B-spline (ECBS), Trigonometric cubic B-spline (TCBS) and

differential quadrature method. We conclude the discussion in Section 5, by stating the merits of the proposed method.

2. Quasilinearization

In this section, we generalise the proof of an existence and uniqueness theorem as well as convergence analysis of [11], for

the SPIBVP. Throughout this paper we assume that E = (E, ≤,‖ · ‖) is an ordered Banach space with order cone E+. In [11],

Lakshmikantham et al. studied an interesting version of fixed point theorem for the operator equation Tx = x where T: E → E,

via quasilinearization and its application to SPIBVP. The result presented in [11] is based on the assumption that the operator

u → T ′
uv is increasing in u for all v ∈ E+. However, in the present work, quadratic convergence of the iterative procedure has been

proved by relaxing the monotonicity condition assumed in [11]. Throughout this paper, T is decomposed as sum of the continuous

operators F and G defined on E. The generalised version of Lakshmikantham et al. [11] result can be stated as follows:

Theorem 2.1. Let E be an ordered Banach space with a normal order cone E+. Assume that T: E → E satisfies the following

hypotheses:

1. F, G: [v0, w0] → E are compact; ∃ v0, w0 ∈ E such that v0 ≤ Tv0, Tw0 ≤ w0 and v0 ≤ w0;

2. The Frechet derivative F ′
u and G′

u exist for every u ∈ [v0, w0]; u → F ′
uv and u → G′

uv are increasing and decreasing, respectively,

on [v0, w0] for all v ∈ E+;

3.

Fu0 − Fu1 ≤ F ′
u0

(u0 − u1) whenever v0 ≤ u0 ≤ u1 ≤ w0. (2.1)

Gu0 − Gu1 ≤ G′
u1

(u0 − u1) whenever v0 ≤ u0 ≤ u1 ≤ w0. (2.2)

4. (I − F ′
v − G′

w)−1 exists and it is a bounded positive operator for all v, w ∈ [v0, w0]. Then for n ∈ N, relations

vn+1 = Tvn + (F ′
vn

+ G′
wn

)(vn+1 − vn)

wn+1 = Twn + (F ′
vn

+ G′
wn

)(wn+1 − wn)

define an increasing sequence (vn) and a decreasing sequence (wn) which converges to the solutions of the operator equation

Tx = x. These fixed points are equal if Tu1 − Tu0 < u1 − u0 for all v0 ≤ u0 < u1 ≤ w0.

Proof. We first prove that vn, wn exists for all n ∈ N and satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0 (2.3)

We prove this by induction. For n = 1, from the definition of v1, we have v1 = (I − F ′
v0

− G′
w0

)−1(T − F ′
v0

− G′
w0

)v0. Hence v1

exists. Similarly it is easy to verify that w1 exists. We will show v1 ≥ v0. Let p = v1 − v0.

p = Tv0 + F ′
v0

(v1 − v0) + G′
w0

(v1 − v0) − v0

(I − F ′
v0

− G′
w0

)p ≥ 0.

Thus p ≥ 0. We get v1 ≥ v0. Similarly it can be shown that w1 ≤ w0. Let p = v1 − w1. Then,

p = Tv0 − Tw0 + F ′
v0

(v1 − v0 − w1 + w0) + G′
w0

(v1 − v0 − w1 + w0)

(I − F ′v0 − G′
w0

)p = Fv0 − Fw0 + Gv0 − Gw0 + F ′
v0

(w0 − v0) + G′
w0

(w0 − v0)

(I − F ′v0 − G′
w0

)p ≤ F ′
v0

(v0 − w0) + G′
w0

(v0 − w0) + F ′
v0

(w0 − v0) + G′
w0

(w0 − v0)

Thus p ≤ 0. Hence v1 ≤ w1. Suppose now that vj, wj exist for some j > 0 and that

v0 ≤ v1 ≤ · · · ≤ v j ≤ wj ≤ wj−1 ≤ · · · ≤ w1 ≤ w0 (2.4)

We have v j+1 = Tv j + (F ′
v j

+ G′
w j

)(v j+1 − v j). Thus v j+1 = (I − F ′
v j

− G′
w j

)−1(T − F ′
v j

− G′
w j

)v j . Consequently v j+1 exists. Similarly

we can show that w j+1 exists. Let p = v j − v j+1.
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