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ARTICLE INFO ABSTRACT
MSsC: On an infinite grid with uniform spacing h, the cardinal basis Cj(x; h) for many spec-
65D05 tral methods consists of translates of a “master cardinal function”, Gi(x; h) = C(x/h — j).
2?2;1,(5) The cardinal basis satisfies the usual Lagrange cardinal condition, Gj(mh) = §;» where §jn
is the Kronecker delta function. All such “shift-invariant subspace” master cardinal func-
Keywords: tions are of “localized-sinc” form in the sense that C(X) = sinc(X)s(X) for a localizer func-
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tion s which is smooth and analytic on the entire real axis and the Whittaker cardinal
function is sinc(X) = sin(wX)/(7X). The localized-sinc approximation to a general f{x) is
flocalized=sinc (v ry = 57 f(jh)s([x — jh]/ h)sinc((x — jh]/h). In contrast to most radial basis
function applications, matrix factorization is unnecessary. We prove a general theorem for

the Fourier transform of the interpolation error for localized-sinc bases. For exponentially-
convergent radial basis functions (RBFs) (Gaussians, inverse multiquadrics, etc.) and the basis
functions of the Discrete Singular Convolution (DSC), the localizer function is known exactly
or approximately. This allows us to perform additional error analysis for these bases. We show
that the error is similar to that for sinc bases except that the localizer acts like a diffusion in
Fourier space, smoothing the sinc error.

DSC interpolation
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1. Introduction

The sinc pseudospectral method is an exponentially-convergent and easily programmed tool to approximate smooth functions
and solve differential equations on an unbounded interval (x € R) with uniform grid spacing h [23,35,36]. The interpolation points
(for this basis and all bases throughout this article) are

x; = jh, j=0,+£1,42,...00 (1)
and the approximation to a function f(x) is
f~f"x) = >" f(jh)sinc(x - jh]/h) (2)
Jj=—00

where sinc(X) = sin (7w X)/(7 X).
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The sinc basis is a “cardinal” or “Lagrange” basis in the sense that, defining

Gj(x; h) = sinc(x/h — j) (3)

Gx;) = { 0. P4 allintegeri, j (4)
The cardinal property implies that the coefficients of the cardinal series are simply the “grid point values” or “samples” of f(x),
the set f{x;).

The sinc basis for a given grid spacing h spans a “shift-invariant subspace” in the sense that all the cardinal functions are
translations of a single “master cardinal function” C(X), which is notationally distinguished by the lack of a subscript

Gi(x; h) = C([x — jh]/h) (5)

where ((X) = sinc(X) for the sinc basis.

Note that the cardinal function for h # 1 is just the dilation of the cardinal function for unit h. When the grid points are
uniformly spaced, it is always possible to rescale the spatial coordinate to unit spacing without changing the accuracy of the
approximation or the cardinal series coefficients

X=x/h & x=h (6)

We shall simplify some formulas by giving them for h = 1, indicated by using X and K as the spatial coordinate and Fourier
transform argument, respectively. There is no loss of generality because of this change of coordinate.

Although spectrally accurate, the sinc method has the large disadvantage that its differentiation matrices are dense and it is
not possible to circumvent dense matrix manipulations by using the Fast Fourier Transform, which is inapplicable to the sinc
basis. However, a wide variety of other “shift-invariant” bases are available.

The sinc basis is unusual in that it is always written in sinc form. Other spectral bases are usually defined by sets of functions
that lack the cardinal property. However, it is always possible with any basis set and interpolation point set to take linear
combinations C; of the basis functions so that the new basis functions do satisfy (5).

In order to satisfy the cardinal property (for unit grid), the master cardinal function must vanish at all integers except the
origin. This implies that all shift-invariant uniform cardinal bases can be written in sinc-factored form as

C(X) = sinc(X)s(X) (7)

where s(X) is a “localizer” function that is analytic for all real x with s(0) = 1.

Below, we shall prove a theorem that explicitly gives the error of the interpolating approximation for general s(X). Later, we
shall specialize to a couple of particular classes of shift-invariant, uniform grid bases (DSC and RBF, defined below) to analyze the
approximation error more precisely.

Wei and his collaborators have published an extensive series of articles about a modified sinc pseudospectral method that
they dubbed the Discrete Singular Convolution (DSC). This is identical to the standard sinc expansion except that the basis
functions are localized by the substitution

sinc(X) — s(X) sinc(X) (8)

where s(X) is a user-chosen localizer function that decays rapidly as |X| — co. Because of the s(X) factor, the modified master
cardinal function C(X) = s(X) sinc(X) now decays rapidly away from its peak at the origin. This makes it possible to truncate the
DSC differentiation matrices to sparse matrices. Wei usually chooses the localizer to be a Gaussian, s(X) = exp ( — X2/L?) for some
positive constant L [1,4,14,15,17,37], but our results are general, and only restricted to Gaussian-DSC where explicitly noted.
The Gaussian-localized basis was independently invented as the “sinc-Gaussian” interpolation [34]. Whatever the name, some
DSC/sinc-Gaussian convergence and error theory can be found in [25,28-31,34].

Radial basis functions (RBFs) are a popular method for multidimensional interpolation on irregular or scattered grids
[10,11,33,38] and for solving differential equations [13,16,19-22,26,27,39]. RBFs seem at first glance to have little connection
with the DSC scheme. In any number of dimensions d, RBF basis functions are of the form :

¢ = (IIx=xll2) X eR! (9)

for some univariate function ¢(r) and some set of N points X;, which are called the “centers”. (Many species of ¢(r) have been
used in the literature as reviewed in [18]). The error falls exponentially with N for smooth f(x) and certain choices of ¢(r); these
“spectrally accurate” RBFs contain a “shape parameter” or “relative inverse width” «. We shall write the various RBF species ¢
as ¢([a/h]x). The user-choosable constant « is the “shape parameter ” or “relative inverse width” (these terms are synonyms).
The RBF width is written as the ratio «/h because only the width relative to the grid spacing is significant.

The RBF basis functions can be recombined into cardinal bases, but unfortunately, the localizers equivalent to the standard
RBF species ¢(r) are not known in exact explicit form. However, as shown in [7,24], the cardinal function localizer for Gaussian
RBFs is, to very accurate approximation,

S00) a’X

_ o 2 2 . .
= 7sinh(azx){1 + O(exp(—2m~/a*))} (Gaussian RBF localizer) (10)
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