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In this paper, a concept of regulation functions is proposed, and some related properties and

examples are explored. Based on this regulation function and some smoothing complemen-

tarity functions, we present a family of smoothing Newton methods to solve the symmetric

cone complementarity problem. This algorithm allows a unified convergence analysis for some

smoothing Newton methods. We show that the resulting Newton equation is well-defined and

solvable, and provides a theory of global convergence.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Suppose V is a Euclidean Jordan algebra, K is the corresponding cone of squares and F: V → V is a continuously differentiable

mapping. The symmetric cone complementarity problem (SCCP) is to find x � V such that

x ∈ K, y = F(x) ∈ K, 〈x, y〉 = 0. (1)

This model provides a simple unified framework for various existing complementarity problems such as the standard com-

plementarity problem over nonnegative orthant cone (NCP), the second-order cone complementarity problem (SOCCP) and the

semidefinite complementarity problem (SDCP). In addition, the model itself is closely related to the KKT optimality conditions for

the convex symmetric cone program (CSCP). Therefore, the SCCP has wide applications in engineering, economics, management

science and other fields; see [1–4] and references therein.

Recently, there is much interest in studying optimization problems over symmetric cones. Many Newton-type methods have

been proposed for solving mathematical programming over symmetric cones. For example, Yoshise introduced interior-point

method to solve the monotone nonlinear SCCP [5,6]. Based on eligible kernel functions, Wang et al. extended the interior-point

method to the Cartesian P∗(k) linear SCCP, which is a generalization of the monotone linear SCCP [7]. The authors further presented

a class of polynomial interior point algorithms using a parametric kernel function [8]. By using Jordan algebra technique, the

iteration bounds were derived that match the currently best known iteration bounds for large- and small-update methods. In

[9], the feasible interior-point method is based on the classical logarithmic barrier function where the iteration complexity can

match the currently best known iteration bound for interior point method solving the Cartesian P∗(k) linear SCCP. Besides, Lu

and Huang extended the continuation method to solve the monotone SCCP[10]. Huang gave a smoothing Newton method frame
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to solve the SCCP [11]. Based on different complementarity functions, various smoothing methods were also developed [12–22].

Among these methods, the smoothing Newton method has been paid much more attention. One kind of smoothing method is to

solve a sequence of Eq. [23]

φμ(x) = 0, μ > 0

for eachμ and gradually forceμ to zero. Hereφμ(x) =φμ(x, F(x)) is a smooth approximation to a symmetric cone complementarity

function φ and φμ → φ as μ → 0. μ is called the smoothing parameter. At each iteration, �xk is a solution of the following

Newton equation:

φ ′
μ(xk)�x = −φ(xk).

Then xk + 1 = xk + tk�xk, where tk is the step size, and μk is updated by some specified procedures. Another kind of smoothing

method is to take the smoothing parameter μ as an independent variable, i.e., μ plays the same role as the main variable x. One

example of this kind of smoothing equation is [11,14,16,17,19]
⎛
⎝

μ
φ(μ, x, y)
y − F(x)

⎞
⎠ = 0. (2)

Another example is [12]
⎛
⎝

eμ − 1
φ(μ, x, y)
y − F(x)

⎞
⎠ = 0, (3)

where φ(μ, x, y) is one of the smoothed Fisher-Burmeister complementarity function or the smoothed natural residual function.

Both of the smoothing Eqs. (2) and (3) can approximate the solution of the original problem. The only drawback is that the

two different smoothing equations lead to different convergence analysis. In order to unify the convergence analysis, we propose

the concept of regulation functions which is very useful to establish the equivalent versions of the original complementarity

problem. Besides the functions μ and eμ − 1, there are many choices to be the first component function of (2) and (3) such as

μ2 + 3μ, (μ + 1) ln (μ + 1). In order to explore many more regulation functions, we investigate some related properties of the

regulation function. Based on the regulation function and complementarity function, we transform the original SCCP (1) into the

following equation system:

H(μ, x, y) =
⎛
⎝

h(μ)
φ(μ, x, y)
y − F(x)

⎞
⎠ = 0, (4)

where h(μ) is a regulation function and φ(μ, x, y) is a smoothing complementarity function. Then we present a specific smoothing

Newton method to solve the equation system (4). It is shown that this method is well-defined and the solution of (1) can be

obtained from any accumulation point of the iteration sequence generated by this method. The algorithm is locally quadratically

convergent under suitable conditions. Numerical results are reported for second-order cone complementarity problems, which

indicate that the algorithm can solve the problems efficiently. Besides the classical regulation functions μ and eμ − 1, some other

regulation functions can also be competitive, such as (μ + 1)ln (μ + 1), 30μ − 1, and so on.

The paper is organized as follows. In the next section, we give a brief introduction to Euclidean Jordan algebra and the

smoothing complementarity functions. In Section 3, we introduce the concept of regulation functions and explore some related

properties and examples. In Section 4, a smoothing Newton method for SCCPs is presented. Preliminary numerical results are

reported in Section 5.

2. Preliminaries

We review some basic concepts and properties which will be used in the subsequent analysis. For more details of Jordan

algebras, the reader is referred to [24,25]. In addition, we recall the smoothing complementarity functions which appears in [19].

2.1. Euclidean Jordan algebra

Let V be a finite dimensional vector space over the field of real numbers. Then (V, ◦) is called a Jordan algebra if a bilinear

mapping V × V → V denoted by ◦ is defined which satisfies x ◦ y = y ◦ x and LxLx2 = Lx2 Lx for any x, y � V, where x2 = x ◦ x, Lx: V

→ V is a linear transformation defined by Lxy = x ◦ y. A Jordan algebra (V, ◦) is called Euclidean if an associative inner product

“〈·, ·〉 : V × V → R” is defined, i.e., 〈x ◦ y, z〉 = 〈x, y ◦ z〉 holds for any x, y, z � V. Also, Jordan algebras are usually defined to be

unitary, that is, they contain a unit element e such that x ◦ e = e ◦ x = x holds for all x � V.

The set of squares K = {x2: x � V} is a symmetric cone of Euclidean Jordan algebra (V, ◦, 〈·,·〉). This means that K is a self-dual

closed convex cone and for any two elements x, y � int(K), there exists an invertible linear transformation �: V → V such that �(K)

= K and �(x) = y. A cone is symmetric if and only if it is the cone of squares of some Euclidean Jordan algebra [24]. Thus K induces

a (partial) order on V: x � y (y � x) ⇔ x − y � K. We use this notation x � y (y � x) when y − x � int(K).
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