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a b s t r a c t

A posteriori error estimation is carried out within a unified framework for various conform-

ing and nonconforming finite element methods for convection–diffusion problems. Our main

contribution is finding an appropriate norm to measure the error, which incorporates a dis-

crete energy norm, a discrete dual semi-norm of the convective derivative and jumps of the

approximate solution over element faces (edges in two dimensions). The error estimator is

shown to be robust with respect to the Péclet number in the sense of the modified norm.

Based on a general error decomposition, we show that the key ingredient of error estimation

is the estimation on the consistency error related to the particular numerical scheme, and

the remaining terms can be bounded in a unified way. The numerical results are presented to

illustrate the robustness and practical performance of the estimator in an adaptive refinement

strategy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The convection–diffusion problem arises in a vast number of applications. The solution may display thin internal or boundary

layers in the convection-dominated case, such that the standard Galerkin finite element method has poor stability and accuracy

properties. To achieve stability and accuracy simultaneously, a wide range of stabilized finite element methods have been

proposed, such as streamline-diffusion methods, local projection schemes, subgrid viscosity methods and continuous interior

penalty methods, see [28,32] and the references therein for an overview. A posteriori error analysis of streamline-diffusion

methods is already well-understood owing to the pioneering work of Verfürth [33,34]. Specifically, two types of estimators can

be derived, i.e., semi-robust and robust error estimators. We refer the readers to the review book [35] for the details. Here we

focus on the robust error estimation where the constant factors are independent of the Péclet number, but the error norm has

to be modified and included the convective derivative of the error. In [34], the convective derivative is measured in a dual norm

(also see [29] for a different norm). It is worth mentioning the latest work [32] of Tobiska and Verfürth, where the robust error

estimation is extended to other stabilized finite element methods. There are also other proposals in the literature for estimating

the error with respect to a priori given (sometimes mesh-dependent) norm, such as residual error indicators [3,23], hierarchical

estimates [1], averaging techniques [10] or functional (constant-free) error estimates [13]. All the works mentioned above are
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only limited to the conforming methods where the discrete solution space is in the primary space. Finally, we also mention that

the a posteriori error estimates for the mixed finite element method have been developed, see, e.g. [11,12,36].

Recently, a great interest arises for a better understanding of the convergence properties of the nonconforming finite elements

for the convection–diffusion problem. A class of nonconforming streamline-diffusion finite element methods have been proposed

and analyzed in [21,22]. Therein, theoretical and numerical investigations show that by adding certain jump terms to the bilinear

form the known O(h3/2) order for L2-convergence in the streamline diffusion norm can be preserved as in the conforming case

for piecewise linear polynomials. We refer the readers to [25–27,31] for further survey and analysis on the nonconforming

streamline-diffusion methods. In [14], El Alaoui and Ern designed and analyzed a nonconforming finite element method with

subgrid viscosity to solve the convection–diffusion problem, which provided the first extension of the subgrid viscosity technique

introduced by Guermond [18,19] to nonconforming settings. The nonconforming finite element methods with face and interior

penalty were discussed in [4,15].

Compared with the conforming elements, a posteriori error analysis of nonconforming finite element approximations to

convection–diffusion equations is a much less explored topic. El Alaoui et al. [15] derived a semi-robust error estimator for the

nonconforming finite element discretization with face penalty. In our latest work [38], semi-robust a posteriori error estimation

for the nonconforming streamline-diffusion methods [22] was presented, and the error analysis was also shown to be applied

to other nonconforming finite element methods with face penalty [15] and subgrid viscosity [14]. This can be viewed as a first

step towards establishing robust error estimates in the nonconforming setting. Besides, for the interior penalty discontinuous

Galerkin method the semi-robust error estimates have also been derived by Ern et al. [16,17].

However, it is not direct to extend the robust error estimates to the nonconforming finite element discretizations, since the

finite element space is nonconforming, i.e., not in the primary space, which requires an appropriate norm for the nonconforming

space. Specifically, when considering the robust error estimation for the nonconforming finite element methods in the above

modified norm, one will meet two obstacles. The first one is that the dual norm introduced in [34] is not well-defined in the

nonconforming finite element space, which needs to redefine the dual norm appropriate for the functions of the nonconforming

space. The second one is that the norm has to contain an extra contribution from jumps of the nonconforming approximation to

bound the tangential jump terms in a posteriori error estimation, since the jumps over element faces (edges in two dimensions)

do not vanish for the nonconforming approximation, see [38, Section 6] for the detailed discussion.

In this paper, we should overcome the two obstacles mentioned above, and extend the robust error estimates to the noncon-

forming cases. In Section 3, we first introduce an appropriate norm to measure the error for the conforming and nonconforming

methods, which incorporates a discrete energy norm, a discrete dual semi-norm of the convective derivative, and jumps of the

approximate solution over element faces (edges in two dimensions) with weights dependent on the mesh size. For the conforming

approximation, the jump terms vanish and the present norm become the usual one [34]. The jump terms with different weights

can be found in the definitions of the error norm for the discontinuous Galerkin methods [30,39] and hybridizable discontinuous

Galerkin method [7] in order to derive a robust a posteriori error estimator. Specifically, the error norm in [30,39] contains

the jump term (hFε
−1‖[[uh]]‖2

F)
1/2 on each interior interface of meshes, and the one in [7] contains a jump term (γF‖[[uh]]‖2

F)
1/2

instead where for the definition of weight γ F we refer to [7, (2.7)]. In contrast, the error norm in this paper contains the jump

term (h−1
F α2

F ‖[[uh]]‖2
F)

1/2 with αF = min {ε−1/2hF, 1}, We note that the weight h−1
F α2

F is comparable with the weight γ F in [7].

Therefore, as well as the one in [7] our a posteriori error estimator will not enlarge the error estimate too much as the error

estimator in [30,39], when the mesh size is not small compared with the diffusion coefficient.

And then, an abstract framework is presented for arbitrary conforming and nonconforming finite element discretizations

of the convection–diffusion problem. Therein, the error is decomposed into three terms: residual error, consistency error and

nonconforming error, which is fixed for all the conforming and nonconforming approximations. Note that, for the conforming

approximations the nonconforming error vanishes and the whole error analysis is the same to the case in [32]. The residual error

and nonconforming error can be estimated in a unified way, as shown in Lemmas 3.1 and 3.2. Thus, the remaining work is the

estimation on the consistency error related to the particular discretization, see Theorem 3.1. In addition, the lower error bound

is obtained without a notion of any numerical scheme, see Theorem 3.2.

In Section 4, we briefly discuss the estimation on the consistency error for various conforming finite element methods, such

as streamline-diffusion methods, local projection schemes, subgrid viscosity methods and continuous interior penalty methods.

In Section 5 we present the estimates of the consistency error for various nonconforming finite element methods, such as

nonconforming streamline-diffusion methods (convective and skew-symmetrized forms), nonconforming face penalty method

and nonconforming subgrid viscosity method. For other nonconforming methods, such as the Pmod
1 streamline-diffusion method

[25] and nonconforming interior penalty [4], the case is similar. In the final section, we show the numerical results for two

examples with internal and boundary layers solved by the nonconforming streamline-diffusion methods.

2. Notations and preliminaries

Let � ⊆ Rd (d = 2, 3), be a bounded domain with polygonal or polyhedral boundary ��. For any given open subset S of �,

(·, ·)S and ‖ · ‖S denote the usual integral inner product and the corresponding norm of both L2(S) and [L2(S)]d, respectively. If S

= �, the subscript will be omitted.

We consider the convection–diffusion problem with homogeneous boundary condition

−ε�u + b · ∇u + cu = f, in �, u = 0, on ∂�, (2.1)



Download English Version:

https://daneshyari.com/en/article/4626617

Download Persian Version:

https://daneshyari.com/article/4626617

Daneshyari.com

https://daneshyari.com/en/article/4626617
https://daneshyari.com/article/4626617
https://daneshyari.com

