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a b s t r a c t

A time-dependent Hermite–Galerkin spectral method (THGSM) is investigated in this paper for

the nonlinear convection–diffusion equations in the unbounded domains. The time-dependent

scaling factor and translating factor are introduced in the definition of the generalized Hermite

functions (GHF). As a consequence, the THGSM based on these GHF has many advantages, not

only in theoretical proofs, but also in numerical implementations. The stability and spectral

convergence of our proposed method have been established in this paper. The Korteweg–de

Vries–Burgers (KdVB) equation and its special cases, including the heat equation and the Burg-

ers’ equation, as the examples, have been numerically solved by our method. The numerical

results are presented, and it surpasses the existing methods in accuracy. Our theoretical proof

of the spectral convergence has been supported by the numerical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many scientific and engineering problems are naturally modeled in the unbounded domains. One way to numerically solve

the problems is to restrict the model equation in some bounded domain and artificially impose some boundary condition cleverly.

Whereas this introduces errors even before the implementation of the numerical scheme. Another more suitable way is to use the

spectral approaches employing orthogonal systems in unbounded domain, such as using Laguerre polynomials for the problems

in semi-bounded or exterior domains [13,19], and using Hermite polynomials for those in the whole space [1,10,11,15,22].

Although the freedom from artificial boundary condition is very attractive, the Hermite spectral method (HSM) is only widely

studied in the recent decade, due to its poor resolution without the appropriate scaling factor. The Hermite functions, defined as

{Hn(x)e−x2}∞
n=0, have the same deficiency as the polynomials {Hn(x)}∞

n=0. However, a suitably chosen scaling factor will greatly

improve the resolution. Its importance has been discussed in [25,28]. It has been shown in [4] that the scaling factor should be

selected according to the truncated modes N and the asymptotical behavior of the function f(x), as |x| → ±�. The optimal scaling

factor is still an open problem, even in the case that f(x) is given explicitly, to say nothing of the exact solution to a differential

equation, which is in general unknown beforehand. Recently, during the study of using the HSM to solve the nonlinear filtering

problems, the first and the third author of this paper gave a practical strategy in [21] to pick the appropriate scaling factor

and the corresponding truncated mode for at least the most commonly used types of functions, i.e. the Gaussian type and the

super-Gaussian type. Thanks to this guideline, the Hermite–Galerkin spectral method (HGSM) becomes implementable.
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In the literature of solving partial differential equations in unbounded domains using HSM, nearly all the schemes are not

direct Galerkin ones. As far as the author knows, there are at least two possible reasons:

1. The lack of the practical guidelines of choosing appropriate scaling factor makes the direct Galerkin method infeasible.

2. When directly applying traditional definition of Hermite functions (i.e., {Hn(x)e−x2}∞
n=0) to second-order differential equations,

it is found in [12] that the stiff matrix is of nonsymmetric bilinear form, which has no property of coerciveness. In other word,

the stability cannot be established by using the classical energy method.

To overcome the obstacles above, Funaro and Kavian [11] first consider the use of the Hermite polynomials to approximate the

solutions of some diffusion evolution equations in unbounded domains. The variable transformation technique is introduced to

get better resolution. Later, Guo [12], Guo and Xu [15] developed the Hermite polynomial spectral and pseudo-spectral methods,

where the transformation U = e−x2
V is used, and then V is approximated by the Hermite polynomials. Ma et al. [22], Ma and

Zhao [23] introduced a time-dependent parameter to stabilize the scheme, which is based on the traditional defined Hermite

functions. However, no discussion was given on how to choose such parameter for the particular problems.

The aim of this paper is to develop a time-dependent Hermite–Galerkin spectral method (THGSM) to approximate the solution

to the nonlinear convection–diffusion equations with high accuracy. In this paper, we focus on the nonlinearity satisfying

Assumptions 1 and 2 in Section 3, which includes the Burger’s equation and KdVB equation. The spectral method has been

applied to various nonlinear problems, such as the nonlinear Shröndinger equation [2], Bose–Einstein condensates [3], Navier–

Stokes equation [20] etc. Also different types of differential equations have been studied by using spectral method, for instance,

pantography-type differential and integral equations [5], hyperbolic PDEs [6], pattern-forming nonlinear evolution systems [7]

etc. More thorough discussion of spectral methods is referred to [26]. The time-dependence is reflected in the definition of the

generalized Hermite functions (GHF), where the scaling factor and the translating factor are the functions of time. The choice of

the time-dependent scaling factor can follow the guidelines in [21], while the time-dependent translating factor mainly deals

with the time-shifting of the solution, see examples in Section 4.3. The advantages of our THGSM are the following:

1. It is a direct Galerkin scheme, which can be implemented straightforward. And the resulting stiffness matrix of the second-

order differential equations is of nice properties. For example, it is tri-diagonal, symmetric and diagonally dominant in the

linear case, i.e. g(u) � 0 in (3.1); it is symmetric for the Burgers’ equation, i.e. g(u) = u
2 in (3.1).

2. The proofs of stability and spectral convergence are greatly simplified, thanks to the definition of GHF. They are analyzed in

the L2 space, instead of the weighted one as in [22].

3. From the numerical simulations in Section 4, our scheme outperforms nearly all the existing methods in accuracy.

An outline of the paper is as follows. In Section 2, we give the definition of GHF and its properties. For the readers’ convenience,

we include the proof of the error estimate of the orthogonal projection. Our TGHSM to solve the nonlinear convection–diffusion

equations is introduced in Section 3. The stability analysis in the sense of [12] and the spectral convergence are shown there.

Section 4 is devoted to the numerical simulations, where we compared the numerical results with those obtained by other

methods in some benchmark equations.

2. Generalized Hermite functions (GHF)

We introduce the GHF and derive some properties which are inherited from the physical Hermite polynomials. For the sake

of completeness, we give the proof of the convergence rate of the orthogonal approximation.

2.1. Notations and preliminaries

Let L2(R) be the Lebesgue space, which equips with the norm ‖·‖ = (
∫
R
|·|2dx)

1
2 and the scalar product 〈·,·〉.

Let Hn(x) be the physical Hermite polynomials given by Hn(x) = (−1)nex2
∂n

x e−x2
, n � 0. The three-term recurrence

H0 ≡ 1; H1(x) = 2x; and Hn+1(x) = 2xHn(x)− 2nHn−1(x). (2.1)

is more handy in implementation. One of the well-known and useful fact of Hermite polynomials is that they are mutually

orthogonal with the weight w(x) = e−x2
. We define the time-dependent GHF as

H
α,β
n (x, t) =

(
α(t)

2nn!
√

π

) 1
2

Hn[α(t)(x − β(t))]e− 1
2 α2(t)[x−β(t)]2

, (2.2)

for n � 0, where α(t) > 0, β(t), for t � [0, T], are functions of time. For the conciseness of notation, let us denote d(n) =
√

n
2 . And

if no confusion will arise, in the sequel we omit the t in α(t) and β(t). It is readily to derive the following properties for the GHF

(2.2):

� At each time t > 0, {H
α,β
n (·, t)}n∈Z+ form the orthogonal basis of L2(R), i.e.∫

R

H
α,β
n (x, t)Hα,β

m (x, t)dx = δnm, (2.3)

where δnm is the Kronecker function.
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