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a b s t r a c t

In this paper, we extend the generalized product-type bi-conjugate gradient (GPBiCG)

method for solving the generalized Sylvester-conjugate matrix equations A1XB1 + C1Y D1 =
S1, A2XB2 + C2Y D2 = S2 by the real representation of the complex matrix and the properties

of Kronecker product and vectorization operator. Some numerical experiments demonstrate

that the introduced iteration approach is efficient.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Sylvester matrix equations of the form{
A1XB1 + C1Y D1 = S1,

A2XB2 + C2Y D2 = S2,
(1.1)

where Ai, Bi, Ci, Di (i = 1, 2), S1, S2 ∈ Cn×n are given matrices and X, Y ∈ Cn×n are the matrices to be determined.

The Sylvester matrix equations have numerous applications in control theory, model reduction, system stability, image

restoration, pole assignment, observer design, filtering, etc. [1–10]. Researches on different kind of the Sylvester matrix equa-

tions appear in many papers. Xie et al. proposed the MCG method for solving the generalized coupled Sylvester-transpose linear

matrix equations AXB + CYTD = S1, EXTF + GYH = S2 over the reflexive and anti-reflexive solutions [11]. Liang et al. presented a

modified conjugate gradient method for solving the equations A1XB1 + C1XTD1 = F1, A2XB2 + C2XTD2 = F2 [12]. Ding et al. gave

the iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle [13]. Liao

et al. obtained the least squares solution with the minimum-norm for the matrix equations AXB = C, GXH = D in [14]. Lee et al.

considered a sufficient and necessary solvability condition for the mixed generalized Sylvester matrix equations A1X − YB1 = C1,

A2Z − YB2 = C2 [15], moreover, Wang et al. provided a new sufficient and necessary solvability condition for the same system
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and gave a general solution expression as the system is solvable [16]. Dehghan et al. investigated some iterative methods for

solving generalized Sylvester matrix equations with the generalized bisymmetric and skew-symmetric matrices in [17]. An iter-

ative approach was derived by Hajarian in [18] for a periodic Sylvester matrix equations Â jX̂ jB̂ j + Ĉ jX̂ j+1D̂ j = Ê j with the period

solutions X̂ j+λ = X̂ j, where λ denotes the period, (j = 1, 2,…). In [19], the author extended the GPBiCG algorithm for solving a

generalized Sylvester-transpose matrix equation
∑r

j=1(AiXiBi + CiX
T Di) = E.

Some complex matrix equations have attracted much attention from many researchers, such as in [20] which shows that

the consistence of the Sylvester-conjugate matrix equation AX − XB = C related to the consimilarity of two matrices [21–23].

By means of a real representation of a complex matrix, the Kalman–Yakubovich conjugate matrix equation X − AXB = C was

investigated in [24]. Xie et al. constructed an efficient algorithm to solve the centrally symmetric (centrally anti–symmetric)

solution of the generalized coupled Sylvester-conjugate matrix equations A1X + B1Y = D1XE1 + F1, A2Y + B2X = D2Y E2 + F2 in

[25]. Based on the properties of the controllable and observable matrices, Wu et al. obtained the expression of the exact solution

for the matrix equations V − AVF = BW and V − AV F = BW [26,27]. Furthermore, they also considered the iterative approach by

using the hierarchical identification principle for solving the Sylvester matrix

p∑
η=1

(AiηXηBiη + CiηXηDiη) = Fi, i ∈ I(1, N),

where I[1, N] denotes the set {1, 2, , N} [28]. On the basis of [28], Song et al. presented some iterative methods for solving the

matrix equations

r∑
η=1

AiXiBi +
s∑

j=1

CjX
H
i Dj = E, i ∈ I(1, N)

and

p∑
η=1

(
AiηXηBiη + CiηXT

η Diη

)
= Fi, i ∈ I(1, N),

where Aiη ∈ Rmi×lη , Biη ∈ Rnη×pi , Ciη ∈ Rmi×nη , Diη ∈ Rlη×pi , Fiη ∈ Rmi×ni are given matrices, Xη ∈ Rlη×nη are the matrices to be

determined [29,30].

As known, the generalized product-type bi-Conjugate Gradient (GPBiCG) method is regarded as an efficient approach for

solving the nonsymmetric linear system

Ax = f, (1.2)

where A ∈ Rm × m, f ∈ Rm. Inspired by the [19,31], in this work, we extend the GPBiCG method to get the matrix iterative scheme

for solving the generalized coupled Sylvester-conjugate matrix equations A1XB1 + C1Y D1 = E, A2XB2 + C2Y D2 = F by the real

representation of the complex matrix and the properties of Kronecker product and vectorization operator. In real case, if A2, B2,

C2, D2 are zero, then (1.1) becomes the problem discussed by Liao, et al. in [32]. Further special cases can be found also in Liao

et al.’s papers, where the solvability, solution formula and factorization algorithms are studied [33–38].

For the convenience of our statements, we use the following notation throughout the paper: Let Rm × n and Cm × n denote

the set of m × n real matrix and m × n complex matrix, respectively. For x ∈ Rn, ‖x‖ denotes the Euclidean norm. For A ∈
Cm × n, we write Re(A), Im(A), A, AT, AH, ‖A‖F to denote the real part, the imaginary part, the conjugation, transpose, conjugate

transpose, the Frobenius norm, respectively. The matrix Diag{A1, A2,…, An} denotes the block diagonal matrix with Ai ∈ Rm × m

(i = 1, 2,…, n). For any A = (aij), B = (bij), A⊗B denotes the Kronecker product defined as A⊗B = (aijB), i = 1, 2,…, m, j = 1, 2,…, n. For

the matrix X = (x1, x2,…, xn) ∈ Cm × n, vec(X) denotes the vectorization operator defined as vec(X ) = (xT
1 , xT

2 , . . . , xT
n )T ∈ Cmn. The

inner product in space Cm × n is defined as

〈A, B〉 = Re[tr(AHB)]. (1.3)

I denotes the unit matrix of the appropriate dimension. i denotes the imaginary unit.

The remainder of the paper is organized as follows. In Section 2, we review the GPBiCG method which is a powerful approach

for solving the nonsymmetric linear system . In Section 3, we generalize the method for solving the matrix Eq. (1.1) by the

real representation of the complex matrix and the properties of Kronecker product and vectorization operator. Some numerical

experiments are given in Section 4, which illustrate that the extending approach is efficient. At last, we end the paper with some

conclusions in Section 5.

2. The GPBiCG methods

Firstly, we will briefly recall the basic idea and the principle of the GPBiCG method in [31], then show the method for solving

the nonsymmetric linear system (1.2).

The conjugate gradient (CG) method is an efficient method for solving the large linear system. The bi-conjugate gradient

(Bi-CG) method, a.k.a. Petrov–Galerkin method, is a popular method for solving the large sparse nonsymmetric linear system.

However, the Bi-CG method tends to numerical instabilities even breakdowns in the iterative process. The conjugate gradient
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