
Applied Mathematics and Computation 265 (2015) 176–186

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Energy-based formulation for nonlinear normal modes

in cable-stayed beam

Zhiqian Wang a,b,∗, Zhuangpeng Yi c, Yingshe Luo a,b

a College of Civil Engineering and Mechanics, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
b Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, Hunan 410004,

PR China
c School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410004, PR China

a r t i c l e i n f o

Keywords:

Cable-stayed beam

Nonlinear normal mode

Nonlinear coupling term

a b s t r a c t

Based on Hamilton’s variational principle, the governing equations for in-plane dynamics of

the model are obtained. Nonlinear normal modes for composite structure cable-stayed beam

have been studied extensively in the literature. When all particles of the system reach their

extremum values at the same instant of time, there are free periodic motions. A partial differ-

ential equation related to the modal function has been constructed by means of conservation

of energy, which can be solved using a perturbation methodology. Most studies have been

limited to uncoupling nonlinear terms of the system. This work investigated the nonlinear

normal modes in the system that contains coupling nonlinear terms. The results of the two

classes of nonlinear terms are also compared in this study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The theory of linear oscillatory systems shows that the principle of linear superposition does not apply in nonlinear systems.

Thus, the concept of normal mode is extended to nonlinear theory. The concept of nonlinear normal modes (NNMs) of vibratory

systems can be regarded as an extension of linear normal modes. Based on the concept of invariant manifolds, the concept of

nonlinear normal modes (NNMs) was originally proposed by Rosenberg [1,2]. Whereafter, many researchers have made impor-

tant contributions to the problem of defining theoretically and constructing analytically the nonlinear normal modes [3]. Since

then, a large body of literature has addressed, with notable success, the qualitative and quantitative analysis of nonlinear phe-

nomena using NNMs [4]. NNMs are a useful mathematical tool to obtain minimal descriptions in structural dynamics and also

to identify the underlying structure of the system nonlinear response [5]. They have the potential to handle strong structural

nonlinearity and address the individualistic nature of nonlinear systems [6,7].

There are some important developments that have occurred to date in the study of NNMs [8,9]. For the discrete system, it

assumes the solution as an expansion in terms of basis functions from a complete set and then uses one of the variants of the

method of weighted residuals to obtain an infinite set of ordinary-differential equations [10,11]. The infinite set of equations is

truncated to practically compute the nonlinear normal modes [12]. Then, the discretized equations are treated with the real-

valued or complex-valued form of the invariant-manifold approach, the energy approach, or an asymptotic method [13]. For
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Fig. 1. Static configuration and dynamic configuration of the cable-stayed beam.

the continuous systems, some studies used direct analytical techniques, such as the method of multiple scales to construct the

nonlinear normal modes [14].

The principal aim of this paper is to discussing the concept of non-linear normal mode [15]. It is attempted to show how

this concept can be used to better understand the free dynamics of nonlinear oscillators [16]. It is noted that the system is

conservative and the boundary conditions involving no dissipation of energy [17,18]. In this work, nonlinear normal mode of the

continuous system cable-stayed beam are studied with a methodology based on the previous work. Only the displacement of

the reference point is taken into account in this work, and the nonlinear normal modes are computed by imposing the condition

of conservation of energy. Using a perturbation analysis, the nonlinear normal modes are approximately solved. Following, the

differences between the nonlinear coupling term [19] and uncoupling term effects of the whole system are investigated.

2. Formulation of the motion

Two Cartesian coordinate systems are chosen to derive the equations of motion, as shown in Fig. 1. For the coordinate system

Oc − xcyczc (Ob − xbybzb), the origin Oc(b) is placed at the left support of the cable (beam). The static (dashed line) and dynamic

(solid line) configurations of the cable-stayed beam are shown in Fig. 1. The three-dimensional displacements of the cable (beam)

are denoted by Uc(xc, t) (Ub(xb, t)), Vc(xc, t) (Vb(xb, t)) and Wc(xc, t) (Wb(xb, t)) along the xc(xb), yc(yb) and zc(zb) directions,

respectively. Moreover, we assume that the bending and torsional shear rigidities of the cable are neglected. We also neglect the

torsional and shear rigidities of the beam. The symbolic meanings are provided with this paper (see Appendix).

2.1. Variational formulation

By applying means of the extended Hamilton principle, we can obtain the motion equations of the system. The extended

Hamilton principle can be expressed as follows:∫ t2

t1

δ(T − U)dt +
∫ t2

t1

δWdt = 0 (1)

where T and U are the kinetic energy and the stain energy of the system, W is the work of non-conservative forces, δ is the sign

of variation.

As aforementioned, the static configuration should be concerned due to the self-weight of the cable and beam. The static

configuration of the cable can be obtained by omitting the dynamic terms. Hence, the static configuration of the cable can be

written as follows:

yc(xc) = 4bxc(lc − xc)/l2
c (2)

where b is the sag of the cable. The axial component of the initial tension is Hi = mcgl2
c /8b. Although the contribution of the static

configuration on the strain energy of the beam is negligible, the shear force of the beam produced by the static configuration

is still considered in the force balance. Under the previous assumptions and by using the classical extended Hamilton principle

[20], the equations of motion governing the vibration are obtained.
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