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a b s t r a c t

How much information does the Laplace transforms on the real line carry about an unknown,

absolutely continuous distribution? If we measure that information by the Boltzmann–Gibbs–

Shannon entropy, the original question becomes: How to determine the information in a prob-

ability density from the given values of its Laplace transform. We prove that a reliable eval-

uation both of the entropy and density can be done by exploiting some theoretical results

about entropy convergence, that involve only finitely many real values of the Laplace trans-

form, without having to invert the Laplace transform.

We provide a bound for the approximation error of in terms of the Kullback–Leibler dis-

tance and a method for calculating the density to arbitrary accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a positive continuous random variable having an (unknown) probability density function (pdf) fX(x) with respect to

the Lebesgue measure on [0, ∞), and let us suppose that its Laplace transform L(α) = E[e−αX ] = ∫ ∞
0 e−αx fX (x)dx, is known.

Since the Laplace transform is not a continuously invertible mapping, (i.e., the inverse Laplace transform exists, but it is

not continuous), the inverse problem consisting of numerically determining fX(x) is set with difficulties. This is an important

consideration if for example, L(α) is to be estimated numerically. The lack of continuity may cause the errors in the determination

of the Laplace transform to be amplified in the inversion process.

But when we actually do not need to know the exact or true fX(x) but only some quantities related to it, like perhaps, expected

values of some given functions of X, or as in many applications in statistical information theory, we may only want to estimate

the entropy of fX. In such case, one would not attempt to invert the Laplace transform, but to estimate the quantity of interest

directly from the available data, which may consist of the values of the Laplace transform at finitely many points.

We will propose a way to use directly real values of Laplace transform to estimate the Boltzmann–Gibbs–Shannon entropy

(entropy for short) H[ fX ] = − ∫ ∞
0 fX (x) ln fX (x)dx without having to determine fX exactly. This generates an interesting mathe-

matical problem, namely, to determine the conditions upon which the entropy of the estimates based on partial data converge

to the entropy of (the unknown) fX. See the work of Piera and Parada [18] and of Silva and Parada [19] for interesting results and

further references to this problem.

Our task is similar to that previously described in the literature for the case in which X has support [0, 1] and a few of its

integer moments are known. As far as the reconstruction of the density goes, Gavriliadis and Athanassoulis [7] and Gavriliadis [6]

obtain some results about the separation of the main mass interval, the tail interval and the position of the mode. In some recent

papers Mnatsakanov [13,14] provides a procedure to recover a probability density function fX (and the associated distribution
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function FX) directly from a finite but large number of integer moments and he estimates the nature of the convergence of the

approximants to the true functions.

When the available information consists of integer moments, Tagliani [21] provides an upper bound of H[fX] directly in terms

of such moments, and Novi-Inverardi et al. [17] estimate the entropy H[fX] by solving a linear system.

All the previous results come from the fact that, when X has bounded support, the underlying moment problem is determinate

and the information content about a distribution is spread over the infinite sequence of its moments. Whereas, when X has

unbounded support, the underlying moment problem may be determinate or indeterminate, and integer moments may prove to

be unsuitable to estimate the above mentioned quantities. In this case, we may rely upon Laplace transform rather than on the

integer moments. And to transform the unbounded domain onto a bounded domain, we shall replace X by an appropriate Y so

that the available information provided by the Laplace transform of X becomes information provided by fractional moments of Y.

So, to be specific, let fX have support [0, +∞) and consider the auxiliary random variable Y = e−X , with support [0, 1]. As said,

the Laplace transform L(α) of fX can be thought of as the moment curve of Y, that is

L(α) = E[e−αX ] = E[Yα] ≡ μY (α) =
∫ 1

0

yα fY (y)dy. (1.1)

Certainly, once the probability density fY is determined, fX (x) = e−x fY (e−x) is obtained by a simple change of variables. Thus

the question becomes: Can we use Laplace transform based techniques to numerically approximate fY from the knowledge of a

finite collection of M real values L(αj ≥ 0), j = 0, . . . , M? The answer is yes under a restrictive hypothesis on fX: As we shall see in

what follows, the entropies H[fX] and H[fY] of X and Y respectively are related by relationship H[ fX ] = H[ fY ] − L′(0), that requires

that fX has a finite first integer moment, i.e., μ1( fX ) = −L′(0) < ∞. The latter condition is direct consequence of introducing the

auxiliary random variable Y = e−X . We shall furthermore see how the approximants to fY may be used to estimate the entropy of

the unknown fY, or that of fX. The latter task requires both H[fX] and H[fY] are finite, from which μ1( fX ) = −L′(0) finite too.

The remainder of the paper is organized as follows. In Section 2 we briefly recall the result of applying the standard entropy

method to estimate the density from a few values of its Laplace transform. In Section 3 we provide bound and estimate for the

entropy that involves only finitely many real values of the Laplace transform. In Section 4 we present an efficient method to carry

out the estimation of fY from a few values of its Laplace transform, as well as to find the optimal model approximates fX with a

prefixed error in terms of Kullback–Leibler distance. We devote Section 5 to a numerical examples and then we round up with

some concluding remarks.

2. The method of maximum entropy

The following problem is rather common in a variety of fields. Consider a random variable taking values in [0, 1], and suppose

all that is known about it is the value of a few of its “generalized” moments (μ0, . . . ,μM), given by

μ j = E[aj(Y )] =
∫ 1

0

aj(y) fY (y)dy, j = 0, . . . , M (2.1)

where the a j : [0, 1] → R are given measurable functions, such that a0 ≡ 1 and μ0 = 1 is the normalization condition upon fY. For

example, we may consider a j(y) = y j and be in the realm of the standard moments problem, or a j(y) = yα j and be in the realm

of the fractional moments problem, or can be trigonometric functions a j(y) = e2iπ j and we shall have a trigonometric moment

problem in our hands.

As the set of probability densities on [0, 1] satisfying (2.1) is a convex set in L1([0, 1], dy), a simple way of picking a point

from that set is by maximizing a concave function defined over it. This is a standard variational method procedure, known as the

maximum entropy (MaxEnt) principle [11].

It consists of maximizing the entropy functional defined over the class of probability densities by

H[ fY ] = −
∫ 1

0

fY (y) ln fY (y)dy (2.2)

subject to (2.1) as constraints. The procedure is rather standard. For a given set (μ0, . . . ,μM) of moments, when the solution fM

exists, it is an approximant to fY given by

fM(y) = exp

(
−

M∑
j=0

λ ja j(y)

)
(2.3)

where (λ0, . . . , λM) are the Lagrange’s multipliers, that appear as part of the minimization procedure as solutions to a dual

problem. Actually, the {λ j, j = 1, . . . , M} are obtained minimizing the dual entropy function

H(λ,μ) = ln Z(λ) + 〈λ,μ〉. (2.4)

where

Z(λ) =
∫ 1

0

e− ∑M
i=1 λiai(y)dy
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