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a b s t r a c t

In this paper, we construct two simplest conforming rectangular elements for the linear elas-

ticity problem under the Hellinger–Reissner variational principle. One is a rectangular ele-

ment in 2D with only 8 degrees of freedom for the stress and 2 degrees of freedom for the

displacement. Another one is a cubic element in 3D with only 18 + 3 degrees of freedom. We

prove that the two elements are stable and anisotropic convergent. Numerical test is presented

to illustrate the element is stable and effective.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the linear elasticity problem in two and three dimensions based on Hellinger–Reissner variational

principle, in which both the stress field and the displacement field are treated as primary unknowns. The design of effective

finite elements for this problem proved to be very difficult. The crux lies in the requirements of symmetry imposed on the stress

and two stable conditions. Some methods have been presented to this problem, such as in [1–3], the composite element is used

in which the displacement space consists of piecewise polynomials in one triangulation domain, while the stress space consists

of piecewise polynomials with respect to a more refined element. And in [4–7], the Lagrange functionals are used to modify the

Hellinger–Reissner functional in which the symmetry of the stress tensor is enforced only weakly or abandoned. Not until the

year 2002, was the first family of stable triangular mixed finite elements [8] proposed for Hellinger–Reissner formulation, using

polynomial shape functions with respect to a single arbitrary triangular mesh for both the stress and the displacement spaces.

From then on some stable mixed finite elements for the linear elasticity problem are presented. For example, the conforming

and nonconforming simplicial elements of two and three dimensions can be found in [9–13]. The nonconforming rectangular

elements of two and three dimensions can see [14–18].

In this paper we focus on the conforming rectangular elements of two and three dimensions with strong symmetry for the

stress field.

In this direction, for two dimension case, a conforming rectangular element with 45 degrees of freedom for the stress and 12

degrees of freedom for the displacement in [19] is presented, meanwhile a simplified form of this element with 36 + 3 degrees

of freedom is given. A conforming rectangular element presented in [20] only has 17 + 4 degrees of freedom, meanwhile instead
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of involving the values of all components of the stress tensor at vertices, only the values of the shear stress at vertices are

included. In [21] the degrees of freedom are further reduced, a conforming rectangular element with 10 + 4 degrees of freedom

is constructed.

For three dimension case, in [22] a conforming cubic element with 72 degrees of freedom for the stress and 6 degrees of

freedom for the displacement is presented. And a conforming cubic element reported in [21] only has 21 + 6 degrees of freedom.

By the way, all above elements which have been reported are assumed that the mesh is shape regular [23,24].

In this paper we present a rectangular conforming element only with 8 + 2 degrees of freedom and a cubic conforming

element only with 18 + 3 degrees of freedom. They are the simplest conforming rectangular elements in 2D and 3D. Meanwhile

they are anisotropic convergent, the mesh shape regular condition is not needed.

This paper is organized as follows. In Section 2, we collect the notations used in the paper. In Section 3, we first construct the

rectangular conforming element R8-2 and the cubic conforming element C18-3. Then we prove the well-posedness and stability

of the finite elements R8-2 and C18-3. In Section 4, we show the optimal order convergence of these two elements without the

mesh shape regular condition. And in Section 5, we give a numerical example which illustrates the proper convergence of this

element. Section 6 is a conclusion of this paper.

2. Notations and preliminaries

Let v = (v1, …, vd)T is a vector-valued field of d variables, d = 2 or 3, then its gradient denoted by grad v, is the matrix-valued

function obtained by applying the ordinary gradient operator to each component of v. Similarly, when τ = (τ ij)d × d is a tensor,

its divergence denoted by divτ, is the vector field obtained by applying the divergence operator to each row of τ . That is

grad v =
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, d = 3.

In this paper, ‖ · ‖0, T is denoted the norm of space L2(T), and Hk(T, X) denotes the space of functions on T ⊂ R
d, with values in

the finite-dimensional space X and all derivatives of order at most k in L2(T). If X ranges over R, we will simply use Hk(T) instead.

The norm and semi-norm in Hk(T, X) is denoted by ‖ · ‖k, T and | · |k, T. That is

‖u‖k, T =
( ∑

0≤|α|≤k

‖Dαu‖2
0,T

) 1
2
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.

where the Dαu is the weak partial derivative of function u. The space Pk1,k2
(T, R) (k1, k2 are integers), always written as Pk1, k2

,

consists of polynomials on T of degree at most k1 in x1 and k2 in x2. We set Pk1,k2
=: {0}, if either k1 or k2 is negative. The same

rule also holds for Pk(T, R), the space of polynomials in two variables x1 and x2 of total degree at most k. These symbols are

naturally generalized to 3-dimension case. Let S denote the space of symmetric tensor. The space L2(T, R
d) is the set of vector-

valued functions which are square integrable. The space H(div, T, S) consists of square-integrable symmetric matrix fields with

square-integrable divergence. The norm ‖ · ‖H(div, T ) is defined as

‖τ‖2
H(div, T ) = ‖τ‖2

0, T + ‖divτ‖2
0, T .

Supposed that an elastic body, occupying a simple connected polygonal domain � of R
d and clamped on ∂�, is subject to the

given body force f, then the continuous problem is: find (σ, u) ∈ H(div,�, S) × L2(�, R
d) such that{

a(σ,τ) + b(τ, u) = 0, ∀τ ∈ H(div,�, S),

b(σ, v) = ( f, v), ∀v ∈ L2(�, R
d),

(2.1)

where a(σ,τ) = ∫� A σ : τ dx, b(τ, v) = ∫� divτ · v dx, ( f, v) = ∫� f · v dx. Throughout the paper, the compliance tensor A =
A(x) : S → S, characterizing the properties of the material, is bounded and symmetric positive definite uniformly for x ∈ �

.

3. The 2-D and 3-D conforming rectangular finite element spaces

In this section, we use mixed finite element method to solve problem (2.1). Two elements are given, one is in two dimensional

space and another one is in three dimensional space.
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