
Applied Mathematics and Computation 265 (2015) 352–357

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A spline collocation method for Fredholm–Hammerstein

integral equations of the second kind in two variables

Sanda Micula∗

Department of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
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a b s t r a c t

We consider Fredholm–Hammerstein integral equations of the second kind over a rectangular

region in plane. As in Kumar and Sloan (1987) [5], we reformulate it into an equivalent integral

equation. For the alternative equation, we triangulate the rectangular domain and on each

triangle use a collocation method based on constant spline approximation. We discuss the

convergence of the approximate solutions and conclude the paper with numerical examples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Integral equations have a wide variety of applications in many fields of engineering, physics, chemistry, biology, mechan-

ics, astronomy. They provide an important tool for modeling various phenomena and processes occurring in heat conducting

radiation, elasticity, electrostatics, radiative transfer, computer graphics, realistic illumination, particle transport problems of as-

trophysics, chemical kinetics, chemical reactor theory, economics, theory of communication systems, magnetohydrodynamics,

quantum mechanics and many other areas (for more applications of integral equations, see [11]). Also, many initial and boundary

value problems associated with ordinary and partial differential equations can be reformulated as integral equations (see [10]).

Numerical solutions of nonlinear Fredholm integral equations of the second kind have been studied extensively, through a

variety of methods. Projection methods – collocation [2,5,9] and Galerkin [3] – and Nyström methods [7] are among the most

popular ones. Also, recent results were obtained using kernel methods [4] and Adomian decomposition methods [6]. For more

details on approximating methods, see [1].

In this paper, we consider a Fredholm–Hammerstein integral equation of the type

u(x, y) =
∫

D

k(x, y, s, t)g(s, t, u(s, t))ds dt + f (x, y), (x, y) ∈ D = [a, b] × [c, d],

where g : D × R → R is a continuous nonlinear function. Other smoothness assumptions will be made on k, g and f later on.

For simplicity, we use the shorter notation q = (x, y) and w = (s, t). So, we have the integral equation

u(q) =
∫

D

k(q, w)g(w, u(w))dw + f (q), q ∈ D = [a, b] × [c, d]. (1.1)
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Remark 1.1. The ideas we present here work for other closed regions D ⊆ R
2, as well, but for simplicity, we restrict ourselves to

the case D = [a, b] × [c, d].

As in [5], let

v(w) := g(w, u(w)).

Then v and u must satisfy the integral equations

v(q) = g

(
q,

∫
D

k(q, w)v(w)dw + f (q)
)
, q ∈ D (1.2)

and

u(q) =
∫

D

k(q, w)v(w)dw + f (q), q ∈ D, (1.3)

respectively.

Under certain assumptions, an approximation scheme applied to Eq. (1.2) will lead to an approximate solution of (1.3).

Throughout this paper, we assume the following conditions are satisfied:

C1 The integral operator K: C(D) → C(D) defined by

(Ku)(q) =
∫

D

k(q, w)g(w, u(w))dw

is completely continuous;

C2 The equation u = Ku + f has an isolated solution u∗ with non-zero index, which is assumed to be smooth enough;

C3 The function f ∈ C(D);

C4 The derivative gu(w, u) exists and is continuous on D × R.

We briefly describe the general collocation method framework. Suppose {τ1, . . ., τm} ⊂ D are nodes in D and {lm1, . . ., lmm}
is a set of functions defined on D such that l j(τi) = δi j, 1 ≤ i, j ≤ m. Let Pm : D → Dm = span{lm1, . . ., lmm} be the interpolatory

projection operator defined by

(Pmu)(q) =
m∑

j=1

u(τ j)lm j(q), q ∈ D. (1.4)

Then Pm is a bounded linear operator with norm

||Pm|| = sup
q∈D

m∑
j=1

|lm j(q)|.

Assume that

lim
m→∞ ||u − Pmu|| = 0, for all u ∈ C(D). (1.5)

Recall that u∗ is the isolated solution of (1.1) that we are trying to approximate and let v∗ be the corresponding solution of (1.2).

Using Pm, we define an approximation of v∗ by

vm(q) = Pmv(q) =
m∑

j=1

vm(τ j)lm j(q), (1.6)

where the values {vm(τ j)}m
j=1

are determined by forcing Eq. (1.2) to be true at the collocation points, i.e. from the system

vm(τi) = g

(
τi,

m∑
j=1

vm(τ j)

∫
D

k(τi, w)lm j(w)dw + f (τi)

)
, i = 1, . . ., m. (1.7)

This leads to the approximate solution of (1.3)

um(q) =
∫

D

k(q, w)vm(w)dw + f (q) =
m∑

j=1

vm(τ j)

∫
D

k(q, w)lm j(w)dw + f (q). (1.8)

Regarding these, we have the following result:

Theorem 1.2. ([5, Theorem 2]) Assume conditions C1-C4 hold and that the operator Pm defined in (1.4) satisfies (1.5). Then

||vm − v∗|| → 0, ||um − u∗|| → 0, as m → 0.
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