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a b s t r a c t

There are few optimal fourth-order methods for solving nonlinear equations when the mul-

tiplicity m of the required root is known in advance. Therefore, the first focus of this paper is

on developing new fourth-order optimal families of iterative methods by a simple and elegant

way. Computational and theoretical properties are fully studied along with a main theorem

describing the convergence analysis. Another main focus of this paper is the dynamical anal-

ysis of the rational map associated with our proposed class for multiple roots; as far as we

know, there are no deep study of this kind on iterative methods for multiple roots. Further,

using Mathematica with its high precision compatibility, a variety of concrete numerical ex-

periments and relevant results are extensively treated to confirm the theoretical development.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With the advancement of computer algebra, finding higher-order multi-point methods, not requiring the computation of

second-order derivative for multiple roots become very important and interesting task from the practical point of view. These

multi-point methods are of great practical importance since they overcome theoretical limits of one-point methods concerning

the order and computational efficiency. Further, these multi-point iterative methods are also capable to generate root approxi-

mations of high accuracy.

Let us consider a nonlinear function f : D ⊂ R → R, where D is an open interval such that rm ∈ D is a root of equation f (x) = 0

with multiplicity m.

In the last years, some optimal iterative methods (in the sense of Kung–Traub conjecture [1]) have appeared. In 2009, Li et al.

[2] proposed the following fourth-order optimal two-point method which requires one function and two first-order derivative

evaluations per iteration⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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Sharma and Sharma [3] proposed the following optimal variant of Jarratt’s method for obtaining multiple roots⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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(1.2)

It has fourth-order of convergence and requires one-function and two-derivative evaluation per iteration.

Again in 2010, Li et al. [4] proposed six fourth-order two-point methods with closed formulas for finding multiple zeros of

nonlinear functions. Among them, the following one is optimal:⎧⎪⎨
⎪⎩
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where
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Zhou el al. [5] in 2011 constructed a more general iteration scheme for multiple roots, requiring one function and two deriva-

tive evaluation per iteration as follows:⎧⎪⎨
⎪⎩
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(1.4)

where Q(·) ∈ C2(R) is a weight function and discussed the conditions on Q to obtain fourth-order optimal methods from it. Zhou

et al. have also proved that the above methods namely, (1.2) and (1.3) are special cases of his scheme.

In 2012, Sharifi et al. [6], proposed an optimal family of fourth-order methods as below⎧⎪⎪⎨
⎪⎪⎩
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where G(·) and H(·) are two real valued weight functions.

On the other hand, Soleymani and Babajee [7] in 2013, developed following fourth-order optimal family of methods⎧⎪⎪⎨
⎪⎪⎩
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where H(·) is a real valued weight function.

Zhou et al. [8] in 2013, constructed another family of fourth-order methods, requiring two-function and one-derivative eval-

uation per iteration as follows:⎧⎪⎨
⎪⎩
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