On developing fourth-order optimal families of methods for multiple roots and their dynamics ${ }^{\text {TH }}$

Ramandeep Behl ${ }^{\mathrm{a}, *}$, Alicia Cordero ${ }^{\mathrm{b}}$, S.S. Motsa ${ }^{\mathrm{a}}$, Juan R. Torregrosa ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
${ }^{\mathrm{b}}$ Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain

A R T I C L E I N F O

MSC:

65H05

Keywords:

Nonlinear equations
Multiple roots
Halley's method
Schröder method
Complex dynamics
Basin of attraction

Abstract

There are few optimal fourth-order methods for solving nonlinear equations when the multiplicity m of the required root is known in advance. Therefore, the first focus of this paper is on developing new fourth-order optimal families of iterative methods by a simple and elegant way. Computational and theoretical properties are fully studied along with a main theorem describing the convergence analysis. Another main focus of this paper is the dynamical analysis of the rational map associated with our proposed class for multiple roots; as far as we know, there are no deep study of this kind on iterative methods for multiple roots. Further, using Mathematica with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm the theoretical development.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With the advancement of computer algebra, finding higher-order multi-point methods, not requiring the computation of second-order derivative for multiple roots become very important and interesting task from the practical point of view. These multi-point methods are of great practical importance since they overcome theoretical limits of one-point methods concerning the order and computational efficiency. Further, these multi-point iterative methods are also capable to generate root approximations of high accuracy.

Let us consider a nonlinear function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$, where D is an open interval such that $r_{m} \in D$ is a root of equation $f(x)=0$ with multiplicity m.

In the last years, some optimal iterative methods (in the sense of Kung-Traub conjecture [1]) have appeared. In 2009, Li et al. [2] proposed the following fourth-order optimal two-point method which requires one function and two first-order derivative evaluations per iteration

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \tag{1.1}\\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left[\frac{m(m-2)\left(\frac{m}{m+2}\right)^{m} f^{\prime}\left(y_{n}\right)-m^{2} f^{\prime}\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)-\left(\frac{m}{m+2}\right)^{m} f^{\prime}\left(y_{n}\right)}\right]
\end{array}\right.
$$

[^0]Sharma and Sharma [3] proposed the following optimal variant of Jarratt's method for obtaining multiple roots

$$
\left\{\begin{align*}
y_{n}= & x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.2}\\
x_{n+1}= & x_{n}-\frac{m}{8}\left\{\left(m^{3}-4 m+8\right)-(m+2)^{2}\left(\frac{m}{m+2}\right)^{m} \frac{f^{\prime}\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)}\right. \\
& \left.\times\left(2(m-1)-(m+2)\left(\frac{m}{m+2}\right)^{m} \frac{f^{\prime}\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)}\right)\right\} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{align*}\right.
$$

It has fourth-order of convergence and requires one-function and two-derivative evaluation per iteration.
Again in 2010, Li et al. [4] proposed six fourth-order two-point methods with closed formulas for finding multiple zeros of nonlinear functions. Among them, the following one is optimal:

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.3}\\
x_{n+1}=x_{n}-a_{3} \frac{f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)}-\frac{f\left(x_{n}\right)}{b_{1} f^{\prime}\left(x_{n}\right)+b_{2} f^{\prime}\left(y_{n}\right)}
\end{array}\right.
$$

where

$$
\begin{aligned}
& a_{3}=-\frac{m(m+2)(m+2)^{3}}{2\left(m^{3}-4 m+8\right)}\left(\frac{m}{m+2}\right)^{m} \\
& b_{1}=-\frac{\left(m^{3}-4 m+8\right)^{2}}{m\left(m^{2}+2 m-4\right)^{3}} \\
& b_{2}=\frac{m^{2}\left(m^{3}-4 m+8\right)}{\left(m^{2}+2 m-4\right)^{3}}\left(\frac{m+2}{m}\right)^{m}
\end{aligned}
$$

Zhou el al. [5] in 2011 constructed a more general iteration scheme for multiple roots, requiring one function and two derivative evaluation per iteration as follows:

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.4}\\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} Q\left(\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)
\end{array}\right.
$$

where $Q(\cdot) \in C^{2}(\mathbb{R})$ is a weight function and discussed the conditions on Q to obtain fourth-order optimal methods from it. Zhou et al. have also proved that the above methods namely, (1.2) and (1.3) are special cases of his scheme.

In 2012, Sharifi et al. [6], proposed an optimal family of fourth-order methods as below

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.5}\\
x_{n+1}=x_{n}+\left(\frac{m\left(m^{2}+2 m-4\right)}{4} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{m(m+2)^{2}}{4}\left(\frac{m}{m+2}\right)^{m} \frac{f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)}\right)\left[G\left(\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)+H\left(\frac{f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)}\right)\right]
\end{array}\right.
$$

where $G(\cdot)$ and $H(\cdot)$ are two real valued weight functions.
On the other hand, Soleymani and Babajee [7] in 2013, developed following fourth-order optimal family of methods

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\frac{2 m}{m+2} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \tag{1.6}\\
x_{n+1}=x_{n}-\frac{4 m\left(\frac{m}{m+2}\right)^{m} f\left(x_{n}\right)}{\left(\frac{m}{m+2}\right)^{m}\left(m^{2}+2 m-4\right) f^{\prime}\left(x_{n}\right)-m^{2} f^{\prime}\left(y_{n}\right)} H\left(\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)
\end{array}\right.
$$

where $H(\cdot)$ is a real valued weight function.
Zhou et al. [8] in 2013, constructed another family of fourth-order methods, requiring two-function and one-derivative evaluation per iteration as follows:

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.7}\\
x_{n+1}=x_{n}-m G(v) \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{array}\right.
$$

https://daneshyari.com/en/article/4626675

Download Persian Version:
https://daneshyari.com/article/4626675

Daneshyari.com

[^0]: *. This research was supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-02.

 * Corresponding author. Tel.: +27 620923095.

 E-mail address: behlr@ukzn.ac.za, ramanbeh187@yahoo.in (R. Behl).

