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a b s t r a c t

In this paper, we consider the discrete Legendre spectral Galerkin and discrete Legendre spec-

tral collocation methods to approximate the solution of mixed type Hammerstein integral

equation with smooth kernels. The convergence of the discrete approximate solutions to the

exact solution is discussed and the rates of convergence are obtained. We have shown that,

when the quadrature rule is of certain degree of precision, the rates of convergence for the

Legendre spectral Galerkin and Legendre spectral collocation methods are preserved. We ob-

tain superconvergence rates for the iterated discrete Legendre Galerkin solution. By choosing

the collocation nodes and quadrature points to be same, we also obtain superconvergence

rates for the iterated discrete Legendre collocation solution.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this section, we consider the following Hammerstein integral equation of mixed type

x(t) −
m∑

i=1

∫ 1

−1

ki(t, s)ψi(s, x(s))ds = f (t), −1 ≤ t ≤ 1, (1.1)

where f, ki and ψ i (1 ≤ i ≤ m) are known functions and x is the unknown solution to be found in a Banach space X.

Mixed type Hammerstein integral Eq. (1.1) often arises as a reformulation of boundary value problems with certain nonlinear

boundary conditions. Several numerical methods, such as boundary element methods, various spectral methods are available

in literature to solve nonlinear integral equations (see [2,3,4,6,7,14,23]). The existence and uniqueness of the solution and con-

vergence analysis of various spectral approximations of nonlinear systems of integral equations are conveyed in [11,22,26]. The

Galerkin, collocation and their discretized versions are the most commonly used projection methods for finding numerical so-

lutions of the integral equation of type (1.1) (see [8–12]). Superconvergence results of various projection methods for solving

nonlinear Fredholm integral equations can be found in ([8,9,17,18,20]).

Projection methods for solving the equation of type (1.1) using piecewise polynomials were studied by Ganesh and Joshi

[11] and a discretized version of those methods was introduced in [12]. Polynomially-based projection methods for the integral

equation of type (1.1) were discussed in [9].

The projection methods for (1.1) lead to algebraic non-linear system, in which the coefficients are integrals, appeared due to

inner products and the integral operator. These integrals are almost always evaluated numerically. However, in all the projection

∗ Corresponding author. Tel.: +919874126071.

E-mail addresses: dasPayel2@gmail.com (P. Das), gnanesh@maths.iitkgp.ernet.in (G. Nelakanti).
1 Tel.: +913222-283656.

http://dx.doi.org/10.1016/j.amc.2015.05.100

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.05.100
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.05.100&domain=pdf
mailto:dasPayel2@gmail.com
mailto:gnanesh@maths.iitkgp.ernet.in
http://dx.doi.org/10.1016/j.amc.2015.05.100


P. Das, G. Nelakanti / Applied Mathematics and Computation 265 (2015) 574–601 575

methods for Hammerstein integral equations and mixed type Hammestein integral Eq. (1.1), it is assumed that the integrals

appearing in the approximation schemes are evaluated exactly (see [2,9,11,19]). Thus, in all these methods the effect of error due

to the numerical integration has been ignored. This motivates to solve these nonlinear systems after replacing the integrals by

appropriate numerical integration formula. Replacement of these integrals by numerical quadrature rule gives rise to the discrete

projection methods. The effect of quadrature error on the convergence rates of the approximate solutions is now considered in

these discrete projection methods (see [3,4,12]). Now to apply discrete projection methods for solving the Eq. (1.1), one can

use either piecewise polynomials or global polynomials as basis functions of the approximating subspaces. In [12], Ganesh and

Joshi obtained convergence rates for the approximate solution of piecewise polynomial based discrete collocation method, when

the quadrature rule is of certain degree of precision. However in case of piecewise polynomial based projection methods, to

get better accuracy in approximate solutions, one has to increase the number of partition points. This leads to solve a large

system of nonlinear equations, which is computationally very expensive. Use of global polynomials imply smaller nonlinear

systems, something which is highly desirable in practical computations. Hence, to overcome the computational complexities

encountered in the existing piecewise polynomial based discrete projection methods, we apply polynomially-based discrete

projection methods to solve Fredholm–Hammerstein integral equation of mixed type (1.1).

In this paper, we apply discrete Galerkin and discrete collocation methods to solve mixed type Fredholm–Hammerstein inte-

gral Eq. (1.1) using global polynomial basis functions. In particular here, we choose to use Legendre polynomials, which can be

generated recursively with ease and possess nice property of orthogonality. Further, these Legendre polynomials are less expen-

sive computationally compared to piecewise polynomial basis functions. By choosing a sufficiently accurate numerical quadra-

ture rule, we show that the discrete Legendre Galerkin and discrete Legendre collocation solutions of the Eq. (1.1) converge with

the optimal order O(n−r) in both infinity and L2-norm, and the iterated discrete Legendre Galerkin solution converges with the

order O(n−2r) in both infinity and L2-norm, whereas the iterated discrete Legendre collocation solution converges with the order

O(n−r) in both infinity and L2-norm, n being the highest degree of the polynomial approximation and r being the smoothness of

the kernels, the nonlinear functions ψ i, the right hand side function f and the exact solution. Thus, we obtain superconvergence

rates for the iterated discrete Legendre Galerkin method. In a particular case, when the quadrature points and collocation nodes

are chosen to be same, the iterated discrete Legendre collocation solution converges with the order O(n−2r) in both infinity and

L2-norm. Thus in such case we also obtain superconvergence rates for the iterated discrete Legendre collocation method.

We organize this paper as follows. In Section 2, we set up notations and discuss the discrete Legendre Galerkin and discrete

Legendre collocation methods for mixed type Hammerstein integral equations with smooth kernels. In Section 3, we discuss

the existence of the approximate and iterated approximate solutions and their convergence rates. In Section 4, we illustrate our

results by numerical examples. Throughout this paper, we assume that c is a generic constant.

2. Discrete Legendre spectral Galerkin and discrete Legendre spectral collocation methods: Hammerstein integral

equations of mixed type with smooth kernel

In this section, we describe the discrete Galerkin and discrete collocation methods for solving Hammerstein integral equation

of mixed type using Legendre polynomial basis functions.

Let X = C[−1, 1]. For u ∈ X, we define

‖u‖∞ = sup
t∈[−1,1]

|u(t)| and ‖u‖L2 =
(∫ 1

−1

|u(t)|2dt

) 1
2

.

Consider the following Hammerstein integral equation of mixed type

x(t) −
m∑

i=1

∫ 1

−1

ki(t, s)ψi(s, x(s))ds = f (t), −1 ≤ t ≤ 1, (2.1)

where ki, f and ψ i are known functions and x is the unknown function to be determined. Let

(Kix)(t) =
∫ 1

−1

ki(t, s)x(s) ds, x ∈ X. (2.2)

For our convenience, we consider a nonlinear operator �i : X → X defined by

(�ix)(t) := ψi(t, x(t)), t ∈ [−1, 1], x ∈ X. (2.3)

Then the Eq. (2.1) can be written as

x −
m∑

i=1

Ki�i(x) = f . (2.4)

Throughout the paper, the following assumptions are made on f, ki(., .) and ψ i(., x(.)):

(i) f ∈ C[−1, 1].

(ii) lim
t→t

′ ‖ki(t, .) − ki(t ′, .)‖∞ = 0, t, t ′ ∈ [−1, 1], 1 ≤ i ≤ m.

(iii) For 1 ≤ i ≤ m, ki(., .) ∈ C([−1, 1] × [−1, 1]). Let mi = supt,s∈[−1,1] |ki(t, s)| < ∞ and M1 = max1≤i≤m mi.
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