Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Inertia of complex unit gain graphs

Guihai Yuª,∗, Hui Quª, Jianhua Tu^b

^a *Department of Mathematics, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China* ^b *School of Science, Beijing University of Chemical Technology, Beijing 100029, China*

article info

Keywords: Inertia Complex unit gain graph Tree Unicyclic graph

ABSTRACT

Let $\mathbb{T} = \{z \in \mathcal{C} : |z| = 1\}$ be a subgroup of the multiplicative group of all nonzero complex numbers \mathbb{C}^{\times} . A \mathbb{T} -gain graph is a triple $\Phi = (G, \mathbb{T}, \varphi)$ consisting of a graph $G = (V, E)$, the circle group \mathbb{T} and a gain function $\varphi : \vec{E} \to \mathbb{T}$ such that $\varphi(e_{ij}) = \varphi(e_{ji})^{-1} = \overline{\varphi(e_{ji})}$. The adjacency matrix $A(\Phi)$ of the T-gain graph $\Phi = (G, \varphi)$ of order *n* is an $n \times n$ complex matrix (a_{ij}) , where

 $a_{ij} = \begin{cases} \varphi(e_{ij}), & \text{if } v_i \text{ is adjacent to } v_j, \\ 0 & \text{otherwise.} \end{cases}$ 0, otherwise.

Evidently this matrix is Hermitian. The *inertia* of Φ is defined to be the triple *In*(Φ) = $(i_+(\Phi), i_-(\Phi), i_0(\Phi))$, where $i_+(\Phi), i_-(\Phi), i_0(\Phi)$ are numbers of the positive, negative and zero eigenvalues of $A(\Phi)$ including multiplicities, respectively. In this paper we investigate some properties of inertia of T-gain graph.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The gain graph is a graph whose edges are labeled orientably by elements of a group *S*. This means that, if an edge *e* in one direction has label *s* (a group element in *S*), then in the other direction it has label *s*−¹ (the invertible element of *s* in *S*). The group *S* is called the *gain group*. A gain graph is a generalization of a signed graph where the gain group *S* has only two elements 1 and −1. This can be referred to [\[35\].](#page--1-0) In fact, a gain graph is a weighted digraph where all weights on arcs are elements in a group *S*. In this paper we shall consider a special gain graph — complex unit gain graph.

Throughout this paper we only consider simple graphs, i.e., without multiedges and loops. A graph *G* is denoted by $G = (V, E)$, where *V* is the vertex set and *E* is the edge set. Let \vec{E} be the set of oriented edges. It is evident that this set contains two copies of each edge with opposite orientations. For convenience, we write $e_{v_i v_j}$ (or for short e_{ii}) for the oriented edge from v_i to v_j . Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, which is a circle group, is a subgroup of the multiplicative group of all nonzero complex numbers \mathbb{C}^{\times} . A \mathbb{T} *gain graph (complex unit gain graph)* is a graph with additional structure that each orientation of an edge is given a complex unit, called a *gain*, which is the inverse of the complex unit assigned to the opposite orientation. Here T is the gain group. Formally, a \mathbb{T} -gain graph is a triple $\Phi = (G, \mathbb{T}, \varphi)$ consisting of a graph $G = (V, E)$, the gain group \mathbb{T} and a gain function $\varphi : \vec{E} \to \mathbb{T}$ such that φ (e_{ij}) = φ (e_{ji})⁻¹ = $\overline{\varphi$ (e_{ji}). *G* is called the *underlying graph* of the T-gain graph Φ . For brevity, we write Φ = (*G*, φ) for a T-gain graph. The adjacency matrix A(Φ) of the T-gain graph $\Phi=(G,\varphi)$ of order n is an $n\times n$ complex matrix (a_{ij}), where

 $a_{ij} = \begin{cases} \varphi(e_{ij}), & \text{if } v_i \text{ is adjacent to } v_j, \\ 0 & \text{otherwise} \end{cases}$ 0, otherwise.

<http://dx.doi.org/10.1016/j.amc.2015.05.105> 0096-3003/© 2015 Elsevier Inc. All rights reserved.

[∗] Corresponding author. Tel.: +86 5356903824.

E-mail addresses: yuguihai@126.com (G. Yu), quhui781111@126.com (H. Qu), tujh81@163.com (J. Tu).

Fig. 1. An example for complex unit gain graph.

Obviously, $A(\Phi)$ is Hermitian and its eigenvalues are real.

Example 1. Given an underlying graph with four vertices {1, 2, 3, 4} (as shown in Figure 1). We shall construct a complex unit gain graph such that the gain function satisfies the following: $\varphi(e_{12}) = i = \varphi(e_{21})^{-1}$; $\varphi(e_{13}) = 1 = \varphi(e_{31})$; $\varphi(e_{14}) = \frac{1}{2} - \frac{\sqrt{3}}{2}i =$ φ (*e*₄₁)⁻¹; φ (*e*₂₃) = $\frac{1}{2} + \frac{\sqrt{3}}{2}i = \varphi$ (*e*₃₂)⁻¹; φ (*e*₃₄) = $\frac{\sqrt{3}}{2}i = \varphi$ (*e*₄₃)⁻¹, where $i = \sqrt{-1}$. The adjacency matrix is

$$
\begin{pmatrix}\n0 & i & 1 & \frac{1}{2} - \frac{\sqrt{3}}{2}i \\
-i & 0 & \frac{1}{2} + \frac{\sqrt{3}}{2}i & 0 \\
1 & \frac{1}{2} - \frac{\sqrt{3}}{2}i & 0 & \frac{\sqrt{3}}{2} + \frac{1}{2}i \\
\frac{1}{2} + \frac{\sqrt{3}}{2}i & 0 & \frac{\sqrt{3}}{2} - \frac{1}{2}i & 0\n\end{pmatrix}
$$

If the gain of every edge is 1, the adjacency matrix $A(\Phi)$ is exactly the adjacency matrix $A(G)$ of the underlying graph. Obviously, a simple graph is always assumed as a T-gain graph with all positive gain 1's.

The *inertia* of Φ is defined to be the triple $In(\Phi) = (i_+(\Phi), i_-(\Phi), i_0(\Phi))$, where $i_+(\Phi), i_-(\Phi), i_0(\Phi)$ are numbers of the positive, negative and zero eigenvalues of *A*(Φ) including multiplicities, respectively. We call *i*+(Φ) and *i*−(Φ) the *positive, negative indices of inertia (abbreviated positive, negative indices)* of Φ , respectively. The number $i_0(\Phi)$ is called the *nullity* of Φ . The *rank* of an *n*-vertex \mathbb{T} -gain graph Φ , denoted by *r*(Φ), is defined as the rank of *A*(Φ). Obviously, $r(\Phi) = i_+(\Phi) + i_-(\Phi) = n - i_0(\Phi)$. Recently the inertia of T-gain graph with all positive gain 1's has attracted some attention, for example [\[7,11,12,25,34\].](#page--1-0) Apart from the inertia, there are also many other spectral-based graph invariants, such as graph energies [\[2,6,16,17,23,24\]](#page--1-0) and HOMO– LUMO index [\[21,27\].](#page--1-0) Some other topological molecular descriptors are also studied extensively, including distance-based [\[32\]](#page--1-0) and degree-based [\[30\]](#page--1-0) indices, for example, various of Wiener indices [\[18,26\],](#page--1-0) Randić index [\[15,22\],](#page--1-0) Kirchhoff inde[x\[9,20,28\],](#page--1-0) connective eccentricity index [\[33\],](#page--1-0) ABC index [\[1,14,29\]](#page--1-0) and graph entropies [\[3,4,8,19\].](#page--1-0)

The gain of a walk $W = e_{12}e_{23} \dots e_{(l-1)l}$ is $\varphi(W) = \varphi(e_{12})\varphi(e_{23}) \dots \varphi(e_{(l-1)l})$. A switching function is a function $\zeta : V \to \mathbb{T}$. Switching the T-gain graph $\Phi = (G, \varphi)$ by ζ means forming a new T-gain graph $\Phi^{\zeta} = (G, \varphi^{\zeta})$ whose underlying graph is the same as *G*, but whose gain function is defined on an edge $e = v_i v_j$ by $\varphi^{\zeta}(e_{ij}) = \zeta(v_i)^{-1} \varphi(e_{ij}) \zeta(v_j)$. Let $\Phi_1 = (G, \varphi_1)$ and $\Phi_2 =$ (G,φ_2) be two T-gain graphs with the same underlying graph. We say Φ_1 and Φ are *switching equivalent*, written $\Phi_1 \sim \Phi_2$, if there exists a switching function ζ such that $\Phi_2 = \Phi_1^{\zeta}$. Switching equivalence forms an equivalence relation on gain functions for a fixed underlying graph.

An *induced subgraph* of Φ is an induced subgraph of Φ and each edge preserves the original gain in Φ . For an induced subgraph *H* of Φ , let Φ – *H* be the subgraph obtained from Φ by deleting all vertices of *H* and all incident edges. For $V \subseteq V(\Phi)$, Φ – V' is the subgraph obtained from Φ by deleting all vertices in V and all incident edges. A vertex of a graph Φ is called *pendant* if it is only adjacent to one vertex, and is called *quasi-pendant* if it is adjacent to a pendant vertex. A set *M* of edges in - is a *matching* if every vertex of Φ is incident with at most one edge in *M*. It is *perfect matching* if every vertex of Φ is incident with exactly one edge in *M*. We denote by $m_φ(i)$ the number of matchings of $Φ$ with *i* edges and by $β(Φ)$ the *matching number* of $Φ$ (i.e. the number of edges of a maximum matching in Φ). For a T-gain graph Φ on at least two vertices, a vertex $v \in V(\Phi)$ is called *unsaturated* in Φ if there exists a maximum matching M of Φ in which no edge is incident with *v*; otherwise, *v* is called saturated in Φ . Denote by *Pn*, *Sn*, *Cn*, *Kn* a path, a star, a cycle and a complete graph all of which are simple graphs of order *n*, respectively.

Nathan Reff [\[31\]](#page--1-0) defined the adjacency, incidence and Laplacian matrices of complex unit gain graph and investigated each of them. Some eigenvalue bounds for the adjacency and Laplacian matrices were present. As a continuation of this work, in this paper we shall study some properties of inertia of adjacency matrix of T-gain graph.

2. Three graph transformations

Definition 1. Let *M* be an Hermitian matrix. The three types of elementary congruence matrix operations (ECMOs) of *M* are defined as follows:

Download English Version:

<https://daneshyari.com/en/article/4626681>

Download Persian Version:

<https://daneshyari.com/article/4626681>

[Daneshyari.com](https://daneshyari.com)