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In this paper a quadrature rule is discussed for highly oscillatory integrals with logarithmic

singularities. At the same time, its error depends on the frequency ω and the computation of

its moments are given. The new rule is implemented by interpolating f at Chebyshev nodes

and singular point where the interpolation polynomial satisfies some conditions. Numerical

experiments conform the efficiency for obtaining the approximations.
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1. Introduction

In applied science, many models are the oscillatory integrals. This paper discusses the computation of highly oscillatory

integrals

I[ f ] =
∫ 1

−1

f (x) log((x − α)2)eiωxdx, (1.1)

where α ∈ [−1, 1], f(x) is a sufficiently smooth real-valued function and ω � 1. To compute (1.1) is difficult because of high

oscillation and logarithmic singularities, which means that the previous methods may not be immediately used to the integral

(see [1–19]).

Recently, a Filon–Clenshaw–Curtis approach

Iα
k,N[ f ] =

∫ 1

−1

v(x) log((x − α)2)eiωxdx ≈ I[ f ] (1.2)

is presented to evaluate (1.1) [20]. The polynomial v(x) of degree N which interpolates f at Chebyshev nodes satisfies the

conditions
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v
(

cos

(
nπ

N

))
= f

(
cos

(
nπ

N

)
, n = 0, 1, . . . , N. (1.3)

Domínguez’s method (1.2) is effective to approximate (1.1), but the error only satisfies O(ω−1) for ω � 1.

In this paper, our aim is to introduce a higher order method to obtain the approximation, where its moments can be evaluated

by a simpler algorithm. Assume that the interpolation function H(x) of f(x) is the special Hermite interpolation polynomial of f(x)

at the Clewshaw–Curtis points cn = cos( nπ
N ) and singular point α, then the approximation of (1.1) can be denoted by

Qs[ f ] =
∫ 1

−1

H(x) log((x − α)2)eiωxdx. (1.4)

In (1.4), H(x) can be constructed according to the following three cases:

• If α = ±1, then

H(k)(−1) = f (k)(−1), H(cn) = f (cn), H(k)(1) = f (k)(1) (1.5)

where n = 1, 2, . . . , N − 1 and k = 0, 1, . . . , s.

• If −1 < α < 1 and α = cos lπ
N for l ∈ [1, N − 1], then

H(k)(−1) = f (k)(−1), H(cn) = f (cn), H(k)(α) = f (k)(α), H(k)(1) = f (k)(1) (1.6)

where n = 1, 2, . . . , l − 1, l + 1, . . . , N − 1 and k = 0, 1, . . . , s.

• If −1 < α < 1 and α �= cos lπ
N for ∀l ∈ [1, N − 1], then

H(k)(−1) = f (k)(−1), H(cn) = f (cn), H(k)(α) = f (k)(α), H(k)(1) = f (k)(1) (1.7)

where n = 1, 2, . . . , l0 − 1, l0 + 1, . . . , N − 1, k = 0, 1, . . . , s and cl0
< α < cl0+1, |cl0

− α| ≤ |cl0+1 − α|.
The polynomials H(x) defined by (1.4) can be expressed as

H(x) =
N+2s∑
j=0

ajTj(x), as α = ±1 (1.8)

and

H(x) =
N+3s∑
j=0

ajTj(x), as − 1 < α < 1, (1.9)

where Tj(x) is the Chebyshev polynomial of the first kind on [−1, 1]. Correspondingly, the general moments is that

Mj =
∫ 1

−1

Tj(x) log((x − α)2)eiωxdx. (1.10)

The outline of this paper is organized as follows: In Section 2 we give the algorithms to evaluate the moments (1.10) and the

error analysis. Numerical examples are presented in Section 3 to demonstrate the results.

2. Computation of the moments and error analysis

For the Chebyshev polynomial Tj(x) of the first kind or Uj(x) of the second kind, there exists [23]

(1 − x2)P′
j(x) = j

2
(Pj−1(x) − Pj+1(x)),

2xPj(x) = Pj+1(x) + Pj−1(x). (2.1)

Therefore, we get

−2xPj(x) + (1 − x2)P′
j(x) =

(
j

2
− 1

)
Pj−1(x) −

(
j

2
+ 1

)
Pj+1(x). (2.2)

Let

K =
∫ 1

−1

(1 − x2)Tj(x) log((x − α)2)eiωxdx. (2.3)

Then

K = 1

iω

∫ 1

−1

(1 − x2)Tj(x) log((x − α)2)deiωx

= − 1

iω

∫ 1

−1

[(1 − x2)Tj(x) log((x − α)2)]′eiωxdx

= − 1

iω

∫ 1

−1

[−2xTj(x) + (1 − x2)T ′
j (x)] log((x − α)2)eiωxdx − 2

iω

∫ 1

−1

(1 − x2)Tj(x)

x − α
eiωxdx. (2.4)
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