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a b s t r a c t

Recently, a new treatment based on Taylor’s expansion to give the estimate of the convergence

radius of iterative method for multiple roots has been presented. It has been successfully ap-

plied to enlarge the convergence radius of the modified Newton’s method and Osada’s method

for multiple roots. This paper re-investigates the convergence radius of Halley’s method un-

der the condition that the derivative f (m+1) of function f satisfies the center-Hölder continuous

condition. We show that our result can be obtained under much weaker condition and has a

wider range of application than that given by Bi et. al.(2011) [21].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Solving non-linear equations is a common and important problem in science and engineering. In this study, we consider the

iterative method for finding a root x∗ of multiplicity m of a nonlinear equation f (x) = 0 on an open interval D⊆R, i.e., f (i)(x∗) =
0, i = 0, 1, . . . , m − 1 and f(m)(x∗) �= 0.

It is known that, the modified Newton’s method for multiple roots, given by Schröder[1], is quadratically convergent and

defined by

xn+1 = xn − m
f (xn)

f ′(xn)
. (1)

The main goal and motivation in constructing iterative methods for solving nonlinear equations are to give higher order

iterative methods with minimal computational cost. The Kung–Traub conjecture[2] suggests that an effective way to improve

the order of convergence of iteration is to use more information of function f. For example, using multistep iterative approach,

a lot of higher-order iterative methods have been presented, see [3–11] and reference therein. Another efficient way is using

single-step iteration, but in this case, the second or higher–order derivative of f should be needed.

For example, in [12], Traub has presented the following cubically convergent iterative method

xn+1 = xn − m(3 − m)

2

f (xn)

f ′(xn)
− m2

2

f (xn)2 f ′′(xn)

f ′(xn)3
,

which can be viewed as an extension of Chebyshev’s method.
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Another famous third order method for multiple roots is Halley’s method, presented by Hansen and Patrick[13]

xn+1 = xn − f (xn)
m+1
2m

f ′(xn) − f (xn) f ′′(xn)
2 f ′(xn)

. (2)

Also using the second derivative, Osada[14] gives another cubically convergent iterative method for multiple roots

xn+1 = xn − 1

2
m(m + 1)

f (xn)

f ′(xn)
+ 1

2
(m − 1)2 f ′(xn)

f ′′(xn)
. (3)

Although more and more iterative methods for multiple roots have been presented, these results show that if the initial guess

x0 is sufficiently close to the root x∗ of the function involved, the sequence {xn} generated by the method is well defined, and

converges to x∗. But, how close to the root x∗ the initial guess x0 should be? These local results give no information on the radius

of the convergence ball for the corresponding method. In fact, for the iterative methods for simple roots, many results on the

radius of convergence ball have been studied. However, there are few results on the iterative methods for multiple roots. Until

recently, Ren and Argyros first give an estimate of the convergence radius of the modified Newton’s method (1) in [15], assuming

that the function f satisfies the Hölder continuous condition

| f (m)(x∗)−1( f (m)(x) − f (m)(y))| ≤ K|x − y|p, ∀x, y ∈ D, K > 0, (4)

and the center-Hölder continuous condition

| f (m)(x∗)−1( f (m)(x) − f (m)(x∗))| ≤ K0|x − x∗|p, ∀x, y ∈ D, K0 > 0, (5)

where 0 < p ≤ 1, K and K0 are positive constants.

Remark 1. It should be pointed out that K0 < K and the radio K
K0

can be arbitrarily large[16]. What is more, the constant K > 0

may not exist (see Example 3 or Example 4.3 in [15]). So, the center-Hölder continuous condition (5) is much weaker than the

Hölder continuous condition (4).

Their work is a milestone, which not only extends the results in [17–19], but also shows us an approach to deal with the local

convergence analysis of the iterative methods for multiple roots. The key idea of them can be summarized as

1. Higher-order derivative

2. Higher-order divided difference

3. Multiple integral

4. Integral inequality

This approach has been successfully applied to give the convergence radius of Osada’s method[20] and Halley’s method[21].

Under the Hölder continuous condition

| f (m)(x∗)−1( f (m+1)(x) − f (m+1)(y))| ≤ K|x − y|p, ∀x, y ∈ D ⊆ R, K > 0,

and then bounded condition

| f (m)(x∗)−1 f (m+1)(x)| ≤ M, for some M > 0.

Bi et al. give the estimate of the convergence radius of Halley’s method (2) as the minimum positive zero r∗ of the function

h(r) = 2mm!MKrp+2 + (m − 1)
m+1∏
i=1

(m + p + 2 − i)K2r2 − 2m(m + 1)!Mrp+1

−m(2m + 1)
m+1∏
i=1

(m + p + 2 − i)Kr + m2(m + 1)
m+1∏
i=1

(m + p + 2 − i). (6)

Different from the approach given by Ren and Argyros in [15], recently, another treatment, based on Taylor expansion, has

been presented by Zhou et. al.[22], which can be outlined as

1. Higher-order derivative

2. Taylor expansion with integral form remainder

3. Integral inequality

Obviously, this approach is simpler than Ren and Argyros. Above all, Zhou et. al. have shown that even under the weaker

condition (the center-Hölder continuous condition (5)), better results can be obtained for the modified Newton’s method (1) and

Osada’s method (3).

So, in this work, we reconsider the local convergence of Halley’s method (2) by Taylor expansion under the condition that

f (m+1) satisfies the center-Hölder continuous condition

| f (m)(x∗)−1( f (m+1)(x) − f (m+1)(x∗))| ≤ K0|x − x∗|p, ∀x ∈ D, K0 > 0. (7)
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