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a b s t r a c t

In this paper we proposed a finite difference scheme for solving the nonlinear Fokker–Planck

equation. We apply a finite difference approximation for discretizing spatial derivatives. Then

we use the cubic C1-spline collocation method which is an A-stable method for the time

integration of the resulting nonlinear system of ordinary differential equations. The proposed

method has second-order accuracy in space and fourth-order accuracy in time variables. The

numerical results confirm the validity of the method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fokker–Planck equation arises in a number of different fields in natural science, including solid-state physics, chemical

physics, quantum optics, theoretical biology, and circuit theory. A Fokker–Planck equation describes the change of probability

of a random function in space and time; hence it is naturally used to describe solute transport. The Fokker–Planck equation was

first used by Fokker and Planck (for instance, see [11]) to describe the Brownian motion of particles.

There is a more general form of Fokker–Planck equation. Nonlinear Fokker–Planck equation has important applications in

various areas such as plasma physics, surface physics, population dynamics, biophysics, engineering, neurosciences, nonlinear

hydrodynamics, polymer physics, laser physics, pattern formation, psychology and marketing (see [1] and references therein).

In one variable case the nonlinear Fokker–Planck equation is written in the following form

∂u(x, t)

∂t
=

[
− ∂

∂x
A(x, t, u)+ ∂2

∂x2
B(x, t, u)

]
u(x, t), (1)

(x, t) ∈ [a, b] × [0, T],

with initial condition

u(x, 0) = ϕ(x),

and the boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0.
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Where A(x, t, u) is the drift vector and B(x, t, u) is the diffusion tensor. We assume that ψ1 and ψ2 are smooth functions. Note

that when A(x, t, u) = A(x, t) and B(x, t, u) = B(x, t) the nonlinear Fokker–Planck equation (1) reduces to the linear Fokker–Planck

equation.

It is worth noting that some semi-analytic techniques are employed to solve the Fokker–Planck equation. For example this

equation is investigated in [4] using the Adomian decomposition method. Also the variational iteration method is developed in

[15] to solve this equation. For some other investigations on this model or some other similar models the interested readers can

see references [5,6,9,10,16]. Authors of [18] developed a finite difference technique to solve the type of Fokker–Planck equations

describing the stochastic dynamics of a particle in a storage ring.

In [17] a finite difference procedure is given for solving the Fokker–Planck equation in two dimensions. Lakestani and Dehghan

in [7] proposed a numerical scheme for Fokker–Planck equation using the cubic B-spline scaling functions. For more applications

of the model studied in this work the interested reader can see [2,3,8].

The organization of this paper is as follows. In Section 2, we present our method for solving nonlinear Fokker–Planck equations.

Validation of this method is shown in Section 3 through some examples. A conclusion is drawn in Section 4.

2. Method of solution

In this section we will combine second-order central difference in space with cubic C1-spline collocation method to ob-

tain a high order method for solving the non-linear Fokker–Planck equation (1). At first we discretize partial differential

equation (1) in space with central difference to obtain a system of ordinary differential equations with unknown function

at each spatial grid point. Then we will apply the cubic C1-spline collocation method for solving the resulting nonlinear system

of ordinary differential equations (see [14]). Also this method can give a closed form approximation for the solution. For positive

integers n and T, let h = b−a
n denotes the step size of spatial derivatives and k denotes the step size of temporal derivative. So we

define

xi = ih, i = 0, 1, . . . , n,

tj = jk, j = 0, 1, . . . .

We first rewrite the Eq. (1) as follows

∂u

∂t
= − ∂

∂x
[u(x, t)A(x, t, u)] + ∂2

∂x2
[u(x, t)B(x, t, u)]. (2)

We have the following relation

∂A(x, t, u)

∂x
= ∂A

∂u

∂u

∂x
+ ∂A

∂x
, (3)

and

∂2A(x, t, u)

∂x2
= ∂2A

∂x2
+ ∂2A

∂x∂u

∂u

∂x
+ ∂A

∂u

∂2u

∂x2
. (4)

Using Eqs. (3) and (4) in Eq. (2) we get:

∂u

∂t
= −u

[
∂A

∂u

∂u

∂x
+ ∂A

∂x

]
− ∂u

∂x
A + u

[
∂2B

∂x2
+ ∂2B

∂x∂u

∂u

∂x
+ ∂B

∂u

∂2u

∂x2

]

+ 2
∂u

∂x

[
∂B

∂u

∂u

∂x
+ ∂B

∂x

]
+ ∂2u

∂x2
B. (5)

Now we define

Q(x) = ∂u

∂t
+ u

∂A

∂x
− u

∂2B

∂x2
, (6)

Then Eqs. (5) and (6) give

Q(x) = ∂u

∂x

[
−u

∂A

∂u
− A + u

∂2B

∂x∂u
+ 2

∂B

∂x

]
+ ∂2u

∂x2

[
u
∂B

∂u
+ B

]
+

(
∂u

∂x

)2 (
2
∂B

∂u

)
. (7)

If we discretize the above equation with second-order central difference in space at each grid point, we obtain the following

relation:

Qi = ui+1

[
1

2h

(
−u

∂A

∂u
− A + u

∂2B

∂x∂u
+ 2

∂B

∂x

)
+ 1

h2

(
u
∂B

∂u
+ B

)]
i

+ ui

[−2

h2

(
u
∂B

∂u
+ B

)]
i

+ ui−1

[
− 1

2h

(
−u

∂A

∂u
+ A + u

∂2B

∂x∂u
+ 2

∂B

∂x

)
+ 1

h2

(
u
∂B

∂u
+ B

)]
i

+ u2
i+1

− 2ui+1ui−1 + u2
i−1

4h2

[
2
∂B

∂u

]
i

. (8)
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