Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments

T. Candan*
Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde 51200, Turkey

A R T I C L E I N F O

Keywords:

Distributed delay
Neutral differential equations
Oscillations

Abstract

In this article, we shall consider second order nonlinear neutral differential equation of certain type. Some oscillation criteria are established for second-order neutral differential equation of the form

$$
\left[r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)\right]^{\prime}+\int_{c}^{d} f(t, x(\sigma(t, \xi))) d \xi=0
$$

where $z(t)=x(t)+\int_{a}^{b} p(t, \xi) x(\tau(t, \xi)) d \xi$. An example is given to show the applicability of our results.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This article is concerned with the second-order nonlinear neutral differential equation with distributed deviating arguments

$$
\begin{equation*}
\left[r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)\right]^{\prime}+\int_{c}^{d} f(t, x(\sigma(t, \xi))) d \xi=0 \tag{1}
\end{equation*}
$$

where $z(t)=x(t)+\int_{a}^{b} p(t, \xi) x(\tau(t, \xi)) d \xi, \gamma>0,0 \leq a<b, 0 \leq c<d$. Throughout this paper it is assumed that
$\left(H_{1}\right) \tau(t, \xi) \in C\left(\left[t_{0}, \infty\right) \times[a, b],(0, \infty)\right), \tau(t, \xi) \leq t$ for $\xi \in[a, b], \tau(t, \xi) \rightarrow \infty$ as $t \rightarrow \infty$,
$\left(H_{2}\right) \sigma(t, \xi) \in C^{1}\left(\left[t_{0}, \infty\right) \times[c, d],(0, \infty)\right), \sigma(t, \xi)$ is decreasing with respect to $\xi, \sigma(t, \xi) \leq t$ for $\xi \in[c, d], \sigma(t, \xi) \rightarrow \infty$ as $t \rightarrow \infty$, $\sigma_{1}(t)=\sigma(t, d)$ and $\sigma_{1}^{\prime}(t)>0$,
$\left(H_{3}\right) p(t, \xi) \geq 0$ and $0 \leqslant P(t)=\int_{a}^{b} p(t, \xi) d \xi<1$,
$\left(H_{4}\right) r(t) \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), \int_{t_{0}}^{\infty}\left(\frac{1}{r(t)}\right)^{\frac{1}{\gamma}} d t=\infty$,
$\left(H_{5}\right) f:\left[t_{0}, \infty\right) \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $u f(t, u)>0$ for all $u \neq 0$ and there exists a function $q(t, \xi) \in C\left(\left[t_{0}, \infty\right) \times\right.$
$[c, d],[0, \infty)$) such that $|f(t, u)| \geq q(t, \xi)\left|u^{\gamma}\right|$.
In recent years, there has been extensive research about the oscillation criteria for second-order delay differential equations. In [1], the second-order delay differential equation of the form

$$
\begin{equation*}
\left(r(t)\left|u^{\prime}(t)\right|^{\alpha-1} u^{\prime}(t)\right)^{\prime}+p(t)|u[\tau(t)]|^{\alpha-1} u[\tau(t)]=0 \tag{2}
\end{equation*}
$$

[^0]was studied. They gave two main results respect to the range of α. Later, (2) was studied by Sun and Meng in [2] and they improved the results in [1]. Furthermore, Dong [3] extended the results in [1] to the second order nonlinear neutral differential equations with deviating arguments of the form
$$
\left(r(t)\left|z^{\prime}(t)\right|^{\alpha-1} z^{\prime}(t)\right)^{\prime}+f(t, x[\sigma(t)])=0, \quad \alpha>0
$$
where $z(t)=x(t)+p(t) x(\tau(t))$. Recently, there has been increasing interest in obtaining sufficient conditions for the oscillation of solutions of neutral differential equations with distributed deviating arguments, see [4-6], and the references cited therein. For the books on the subject of neutral differential equations, we refer the reader to [7-11].

The purpose of this article is to give sufficient conditions for the oscillatory behavior of (1) which involves distributed deviating arguments.

The function x is said to be a solution of (1) if the function $z(t)$ and $r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)$ are continuously differentiable and $x(t)$ satisfies Eq. (1) for $t \geq t_{0}$. A solution of (1), which is nontrivial for all large t, is called oscillatory if it has no last zero. Otherwise, a solution is called nonoscillatory.

2. Main results

We use the following notations for the simplicity:

$$
Q(t)=\int_{c}^{d}[1-P(\sigma(t, \xi))]^{\gamma} q(t, \xi) d \xi, \quad \tilde{Q}(t)=\int_{t}^{\infty} Q(s) d s, \quad \text { and } \quad R(t)=\frac{\gamma \sigma_{1}^{\prime}(t)}{r^{\frac{1}{\gamma}}\left(\sigma_{1}(t)\right)}
$$

Theorem 2.1. Assume that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q(t) d t=\infty \tag{3}
\end{equation*}
$$

Then, Eq. (1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of (1). We assume without loss of generality that $x(t)$ is eventually positive, that is, there exists a $t_{0} \geq 0$ such that $x(t)>0$ for $t \geq t_{0}$ and therefore there exists a $t_{1} \geq t_{0}$ such that $x(\tau(t, \xi))>0$ for $t \geq t_{1}$ and $\xi \in[a, b]$, $x(\sigma(t, \xi))>0$ for $t \geq t_{1}$ and $\xi \in[c, d]$. If $x(t)$ is an eventually negative solution, it can be proved by the same arguments. From $\left(H_{5}\right)$, we have

$$
\begin{equation*}
\left[r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)\right]^{\prime}=-\int_{c}^{d} f(t, x(\sigma(t, \xi))) d \xi \leqslant-\int_{c}^{d} q(t, \xi) x^{\gamma}(\sigma(t, \xi)) d \xi \leqslant 0 \tag{4}
\end{equation*}
$$

Hence, $r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)$ is decreasing. Thus, we have two possible cases for $z^{\prime}(t)$. (i) $z^{\prime}(t)<0$ eventually, (ii) $z^{\prime}(t)>0$ eventually.
(i) Assume that $z^{\prime}(t)<0$ for $t \geq t_{1}$. Using decreasing nature of $r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t)$, we obtain

$$
\begin{equation*}
r(t)\left|z^{\prime}(t)\right|^{\gamma-1} z^{\prime}(t) \leqslant r\left(t_{2}\right)\left|z^{\prime}\left(t_{2}\right)\right|^{\gamma-1} z^{\prime}\left(t_{2}\right), \quad t \geqslant t_{2} \geqslant t_{1} . \tag{5}
\end{equation*}
$$

Dividing both sides of (5) by $r(t)$, integrating from t_{2} to t and using $\left(H_{4}\right)$, we obtain

$$
z(t) \leqslant z\left(t_{2}\right)-r^{\frac{1}{\gamma}}\left(t_{2}\right)\left|z^{\prime}\left(t_{2}\right)\right| \int_{t_{2}}^{t} r^{-\frac{1}{\gamma}}(s) d s \rightarrow-\infty \quad \text { as } \quad t \rightarrow \infty
$$

which contradicts positive nature of $z(t)$.
(ii) Assume that $z^{\prime}(t)>0$ for $t \geq t_{1}$. Since $z(t) \geq x(t)$ and $z(t)$ is increasing, we have

$$
\begin{aligned}
z(t) & =x(t)+\int_{a}^{b} p(t, \xi) x(\tau(t, \xi)) d \xi \\
& \leqslant x(t)+\int_{a}^{b} p(t, \xi) z(\tau(t, \xi)) d \xi \\
& \leqslant x(t)+\int_{a}^{b} p(t, \xi) z(t) d \xi
\end{aligned}
$$

Thus, from the last inequality we have

$$
(1-P(t)) z(t) \leqslant x(t), \quad t \geqslant t_{2}^{*} \geqslant t_{1}
$$

or

$$
\begin{equation*}
[(1-P(\sigma(t, \xi))) z(\sigma(t, \xi))]^{\gamma} \leqslant x^{\gamma}(\sigma(t, \xi)), \quad t \geqslant t_{3} \geqslant t_{2}^{*} \quad \text { and } \quad \xi \in[c, d] \tag{6}
\end{equation*}
$$

Substituting (6) into (4) and using decreasing nature of $\sigma(t, \xi)$ with respect to ξ, we obtain

$$
\left[r(t)\left(z^{\prime}(t)\right)^{\gamma}\right]^{\prime} \leqslant-\int_{c}^{d}[1-P(\sigma(t, \xi))]^{\gamma} q(t, \xi) z^{\gamma}(\sigma(t, d)) d \xi
$$

https://daneshyari.com/en/article/4626748

Download Persian Version:
https://daneshyari.com/article/4626748

Daneshyari.com

[^0]: * Tel.: +90 3882254203.

 E-mail address: tcandan@nigde.edu.tr

