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Numerical methods for weakly singular Volterra integral equations are rarely considered

in the literature. The solutions of such equations may exhibit a singular behaviour in the

neighbourhood of the initial point of the interval of integration and bring some difficulties

in numerical computation. In this paper, we present a numerical solution of weakly singular

Volterra integral equations including the Abels equations by the second Chebyshev wavelet

(SCW). We give the SCW operational matrix of fractional integration, and combine with the

block pulse functions (BPFs) to derive the procedure of solving this kind integral equations. The

proposed method is illustrated with numerical examples. The results reveal that the method

is accurate and easy to implement.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we propose a new method to solve the Volterra integral equation with weakly singular kernel

f (x)− λ

∫ x

0

k(x, t)F(f (t))

(x − t)1−α
dt = g(x), 0 ≤ x ≤ 1. (1)

The function F(·), g(x) and kernel k(x, t) are known, while real numbers α > 0 and λ define a type of equations. In the case

when 0 < α < 1, this equation is also offered as the weakly singular Volterra integral equation (19), and above equation is a

linear Volterra integral equation at α = 1, F(f (t)) = f (t). Particularly, if k(x, t) = 1, 0 < α = 1 − β < 1, we get the Abel integral

equation:

f (x)− λ

∫ x

0

f (t)

(x − t)β
dt = g(x), 0 < β < 1. (2)

Weakly singular Volterra integral equations have many applications in various areas, such as mathematical physics, elec-

trochemistry, semi-conductors, scattering theory, heat conduction, fluid flow and population dynamics [1,2]. There have been

several numerical methods for the singular Volterra integral equations. For instance, product integration methods based on

Newton–Cotes rules [3], Hermite-type collocation method [5], spline collocation and iterated collocation methods [4], extrapola-

tion algorithm [6]. In recent years, researchers have turned their attention to solving weakly singular Volterra integral equations.

However, only a few methods for this difficult topic are presented, such as Nyström interpolant method [7], graded mesh method

[9], optimal homotopy asymptotic method [8], Tau method [11], Laplace transform and Taylor series [10].
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In recent years, wavelet theory has been widely applied in different fields of science and engineering. Wavelets permit the

accurate representation of a variety of functions and operators, and establish a connection with fast numerical algorithms [12].

Orthogonal functions and polynomial series have been received considerable attention in dealing with various problems. The

main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus

greatly simplifying the problems. So the main objective of the present paper is solving the weakly singular Volterra integral

equations based on operational matrix method.

The outline of this article is as follows. In Section 2 the basic formulation of SCW and some properties of SCW are given.

In Section 3, we introduce some necessary definitions and mathematical preliminaries of fractional calculus and give the SCW

operational matrix of fractional integration. In Section 4, we summarise the process of solving weakly singular Volterra integral

equations based on the SCW operational matrix method. In Section 5, we provide several examples to show the efficiency and

simplicity of the method. Concluding remarks are given in the last section.

2. The SCW and operational matrix of the fractional integration

2.1. The construction of SCW

The SCW which defined on the interval [0, 1) have the following form [13,14]:

ψnm(t) =
⎧⎨
⎩2

k
2 Ũm(2kt − 2n + 1),

n − 1

2k−1
≤ t <

n

2k−1
,

0, otherwise,

(3)

where n = 1, . . . , 2k−1 and k is any positive integer, and Ũm(t) =
√

2
π Um(t), here the coefficient

√
2/π is used for orthonormality;

Um(t) is the second Chebyshev polynomials of degree m which respect to the weight function ω(t) =
√

1 − t2. They are defined

on the interval [−1, 1] by the recurrence:

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, . . .

The weight function ω̃(t) = ω(2t − 1) has to be dilated and translated as ωn(t) = ω(2kt − 2n + 1).
The SCW forms an orthonormal basis for L2[0, 1), i.e.

(ψmn(t),ψm′n′(t)) =
{

1, (m, n) = (m′, n′)

0, (m, n) �= (m′, n′)

where (·, ·) denotes the inner product in L2
ωn

[0, 1]. The SCW has compact support [(n − 1)/2k−1, n/2k−1], n = 1, . . . , 2k−1.

2.2. Function approximation

A function f (t) defined over [0, 1], may be expressed in terms of the SCW as

f (t) =
∞∑

n=0

∑
m∈Z

cnmψnm(t),

where the coefficients cnm are given by

cnm = (f (t),ψnm(t))ωn
=

∫ 1

0

ωn(t)ψnm(t)f (t)dt.

We can approximate the function f (t) by the truncated series

f (t) �
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CT�(t), (4)

where the coefficient vector C and SCW function vector �(t) are given by

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T, (5)

�(t) = [ψ10,ψ11, . . . ,ψ1(M−1),ψ20, . . . ,ψ2(M−1), . . . ,ψ2k−10, . . . ,ψ2k−1(M−1)]
T. (6)

Taking the collocation points as following

ti = 2i − 1

2kM
, i = 1, 2, . . . , 2k−1M. (7)

We define the SCW matrix 	m′×m′ as

	m′×m′ =
[
�

(
1

2m′

)
, �

(
3

2m′

)
, . . . ,�

(
2m′ − 1

2m′

)]
,
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