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a b s t r a c t

Compact difference schemes for solving the diffusion equation with nonlocal boundary con-

ditions are considered in this paper. Fourth-order compact difference is used to approximate

the second order spatial derivative, and the integrals in the boundary conditions are approxi-

mated by the composite Simpson quadrature formula. The backward Euler and Crank–Nicolson

schemes are presented as the fully discrete schemes. Error estimates in the discrete h1 and l∞

norms are given by the energy method, showing both schemes are fourth-order accurate in

space, and they have first-order and second-order accuracy in time, respectively. Numerical

results are provided to confirm the theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the compact difference schemes for the one dimensional, time-dependent linear heat equation

∂u

∂t
− ∂2u

∂x2
= f (x, t), 0 < x < 1, 0 < t ≤ T (1)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1 (2)

and the integral boundary conditions

u(0, t) =
∫ 1

0

α(x)u(x, t)dx + ϕ(t),

u(1, t) =
∫ 1

0

β(x)u(x, t)dx + ψ(t), 0 < t ≤ T.

(3)

The above problem arises in the quasi-static theory of thermoelasticity [1–3], and the existence, uniqueness and some analytic

properties of the solution of (1)–(3) have been studied (e.g., [1,2]) under the assumption∫ 1

0

|α(x)| dx < 1 and

∫ 1

0

|β(x)| dx < 1. (4)
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For the heat equation with an integral term in the boundary condition, many numerical methods have been proposed and

studied in the recent years. For example, the θ-scheme which is second-order accurate in space, was discussed with some efficient

algorithms for solving the resulting linear system of equations [4]. Pao [5] gave some monotone iterative schemes for a class of

nonlinear reaction–diffusion equations with nonlocal boundary conditions and analyzed them using the discrete maximal and

minimal solutions techniques. Ekolin [6] proved the convergence of the Crank–Nicolson scheme subject to the condition

(∫ 1

0

α2(x)dx

) 1
2

+
(∫ 1

0

β2(x)dx

) 1
2

<

√
3

2
. (5)

For 1
2 ≤ θ ≤ 1, Liu [4] proved the convergence of the θ-scheme under the condition

∫ 1

0

α2(x)dx +
∫ 1

0

β2(x)dx < 2. (6)

Dehghan [7–9] proposed some finite difference schemes, and reviewed on various approaches in the literature for the numerical

solution of the one-dimensional heat equation subject to the specification of mass.

Besides the finite difference method, there are some other numerical methods on this subject, e.g., Abbasbandy and Shirzadi

[10,11] present the meshless local Petrov– Galerkin method to treat the two-dimensional diffusion equations with non-classical

boundary conditions. For problems with nonlocal boundary conditions involving integrals of the unknown solution over the

spatial interval, a finite element scheme for the second-order elliptic problem was constructed recently [12,13], and orthogonal

spline collocation method for the heat equation was presented in [14] with optimal order error estimates.

Compared with the difference schemes with second-order convergence in space, compact finite difference schemes have

high-order accuracy and the desirable tridiagonal nature of the finite-difference equations, and these schemes have been used

efficiently to solve various kinds of partial differential equations [15–21]. For non-local boundary value problems, high-order

stable three-level schemes for hyperbolic equations were discussed in [22], and some two-level fourth-order explicit algorithms

for diffusion and diffusion–reaction problems were derived [23–26], with the stability proved using Fourier method and the error

estimates given by Lax equivalence theorem after the local truncation errors being analyzed.

To the author’s knowledge, error estimate in the discrete energy norm for the compact Crank–Nicolson scheme was provided

in [27] under a very restrictive condition

(∫ 1

0

α2(x)dx

) 1
2

+
(∫ 1

0

β2(x)dx

) 1
2

<
√

0.432. (7)

Therefore, our purpose is to prove the convergence in the discrete h1-norm and l∞-norm under a weaker condition, for the

two fourth-order compact schemes presented in this paper. To give the convergence analysis, besides (4), we assume that the

functions α(x) and β(x) satisfy

∫ 1

0

α2(x)dx +
∫ 1

0

β2(x)dx < 1. (8)

This restriction is weaker than (7).

The paper is organized as follows. In Section 2, we replace the spatial derivative by the fourth-order compact difference, then

approximate the time derivative by the backward difference and the central difference, respectively. That is, we focus on two

special cases of the general θ-schemes. Since the boundary conditions include the integrals of the unknown variable over the

entire spatial domain, we use the composite Simpson quadrature rule to give a discretization, thus we obtain two implicit com-

pact difference schemes. Both schemes are fourth-order accurate in space, one scheme is the backward Euler scheme(which

is first order accurate in time), another one is the Crank–Nicolson scheme(which has second order accuracy in time). In

Section 3, error estimates are given using the energy method. Finally, some numerical examples are given in Section 4 to

verify the theoretical conclusions. The conclusion is given in Section 5.

Throughout this paper, the symbols ε and C are generic positive constants, they are independent of the mesh sizes, and may

take different values at different places.

2. Construction of the compact difference schemes

2.1. Partition of the domain

For the numerical solution of (1)–(3) we introduce a uniform grid of mesh points (xj, tn), with xj = jh, j = 0, 1, . . . , 2Nx and

tn = nτ , n = 0, 1, . . . , N. Here Nx and N are positive integers, h = 1/(2Nx) is the mesh-width in x, and τ = T/N is the time step. For

any function v(x, t), we let vn
j

= v(xj, tn), e.g., the theoretical solution u at the mesh point (xj, tn) is denoted by un
j
, and Un

j
stands

for the solution of an approximating difference scheme at the same mesh point.
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