Microprocessors and Microsystems 37 (2013) 739-749

Contents lists available at SciVerse ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Parallel processing of intersections for ray-tracing in application-specific processors
and GPGPUs

Alexandre S. Nery #<*, Nadia Nedjah®, Felipe M.G. Franca?, Lech J6Zwiak ¢

2LAM - Computer Architecture and Microelectronics Laboratory, Systems Engineering and Computer Science Program, COPPE, Universidade Federal do Rio de Janeiro, Brazil
b Department of Electronics Engineering and Telecommunications, Faculty of Engineering, Universidade do Estado do Rio de Janeiro, Brazil
¢ Department of Electrical Engineering - Electronic Systems, Eindhoven University of Technology, The Netherlands

ARTICLE INFO ABSTRACT

Article history:
Available online 15 June 2012

The ray tracing rendering algorithm can produce high-fidelity images of 3-D scenes, including shadow
effects, as well as reflections and transparencies. This is currently done at a processing speed of 30 frames
per second. Therefore, current implementations of the algorithm are not yet suitable for interactive real-
time rendering, which is required in games and virtual reality based applications. Nonetheless, the
algorithm allows for massive parallelization of its computations, which is a strong reason of further
improvements. Also, we present a parallel architecture for ray tracing based on a uniform spatial subdi-
ASIP vision of the scene that exploits an embedded computation of ray-triangle intersections. This approach
GPGPU allows for a significant acceleration of intersection computations, as well as a reduction of the total num-
CUDA ber of the required intersections checks. Furthermore, it allows for these checks to be performed in par-
allel and in advance for each ray. In this paper we discuss and analyze an ASIP-based implementation
using FPGAs and a GPGPU-based parallel implementation of the proposed architecture, both running dif-
ferent 3-D scenes. The performance of both implementations are reported and compared. Furthermore, a
second GPU has been included in the GPGPU-based implementation, running the same parallel architec-
ture. Thus, primary rays are split among both GPUs for parallel execution and their performance are also

Keywords:

Ray tracing

Parallel architecture
Application specific

presented and compared.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

High-fidelity computer generated images is one of the main
goals in the Computer Graphics field. Given a 3-D scene, usually
described by a set of 3-D primitives (e.g. triangles), a typical ren-
dering algorithm creates a corresponding image by several matrix
computations and space transformations applied to the 3-D scene,
together with many per-vertex shading computations [1]. All these
computations are organized in pipeline stages, each one perform-
ing many SIMD floating-point operations, in parallel. The Graphics
Processing Unit (GPU) is also known as a Stream Processor, because
of such massively parallel pipeline organization, that continuously
processes a stream of input data through pipeline stages. In the fi-
nal stage, all primitives are rasterized to produce an image (a.k.a.
frame). In order to achieve real-time rendering speed it is neces-
sary to produce at least 60 frames per second (fps), so that the
change between frames is not perceived and interactivity is en-
sured. The Streaming Processor model of current GPU architectures

* Corresponding author at: LAM - Computer Architecture and Microelectronics
Laboratory, Systems Engineering and Computer Science Program, COPPE, Univer-
sidade Federal do Rio de Janeiro, Brazil.

E-mail address: alexandre.solon@gmail.com (A.S. Nery).

0141-9331/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2012.06.006

can deliver enough throughput of frame rates for most 3-D scenar-
ios, but at the cost of a lower degree of realism in each produced
frame. For example, important Global Illlumination effects like shad-
ows and reflections must be handled at the application level, be-
cause the hardware is based on a Local Illumination model and,
thus, is especialized in processing 3-D primitives [10] at a high
rate.

Although the ray tracing algorithm [28] is also a computer
graphics application for rendering 3-D scenes, the algorithm oper-
ates particularly in opposition to traditional rendering algorithms
[1]. For instance, instead of projecting the primitives to the view-
plane, where the final image is produced, the ray tracing algorithm
fires rays towards the scene and traces their path in order to iden-
tify what are the visible objects, their properties and the light tra-
jectory within the scene, through several intersection
computations. Thus, the ray tracing algorithm is a well-known ren-
dering technique for generating high quality images from a 3-D
scenario [28]. This algorithm is classified as a Global Illumination
Model, among with others, such as Path Tracing and Radiosity [1].
In general, all these algorithms add more realistic lighting to 3-D
scenes, such as shadows and reflections. For that reason, the ray
tracing algorithm has been for some time topic of research as the
next substitute for current Graphics Processing Unit (GPU)


http://dx.doi.org/10.1016/j.micpro.2012.06.006
mailto:alexandre.solon@gmail.com
http://dx.doi.org/10.1016/j.micpro.2012.06.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

740 A.S. Nery et al./Microprocessors and Microsystems 37 (2013) 739-749

architectures [8,21], since the latter are based on Local Illlumination
Models and so are not capable of producing such important effects
directly. Therefore, developers must add those effects at the appli-
cation level, although the result quality is not as good as the ray-
tracing counterpart.

However, the main drawback of ray tracing is its high computa-
tional cost, even though the algorithm has a high parallelization
potential. For instance, the performance of parallel implementa-
tions of ray tracing generally scales linearly to the number of
available processors [12,3]. Still, depending on the complexity of
the 3-D scenario to be rendered and also on the number of rays
that are being traced, the algorithm execution can take up to sev-
eral hours to produce a single image [1]. Thus, it is usually applied
for off-line rendering, such as movie production [6], while for real-
time rendering, as required in video-games, the algorithm is usu-
ally not applied. Hence, sequential implementations of ray tracing
are not feasible.

Despite that, there are parallel implementations on Clusters
[32] and Shared Memory Systems [4] that have been able to accel-
erate the algorithm, achieving real-time speed for some scenarios,
applying pre-processing techniques, fast intersection computa-
tions [15], and spatial subdivision of the 3-D scene [33,30,31]. Par-
allel implementations in General Purpose Graphics Processing Unit
(GPGPU) have also achieved substantial results [25,5,24]. The evo-
lution and gradual overlapping of such graphics processing units to
the general purpose niche in the recent decades is significant [13].
Some stages of the graphic’s pipeline, such as the Vertex and Geom-
etry processing stages, have recently evolved to programmable
Shaders, that can be programmed to perform different algorithms
[13]. So, the GPU is no longer dedicated to run graphic related algo-
rithms, but also general purpose parallel algorithms that can ben-
efit from the massively parallel architectue of modern GPGPUs. For
instance, Data Level parallel applications in general achieve high
acceleration when mapped to GPGPUs, because these applications
perform well in SIMD machines [21]. On the other hand, the Stream
Processor architecture model of GPUs is optimized for graphics
applications, with focus on the Local Illumination Model. For in-
stance, control flow and recursion, which are often required in
ray tracing, are very well performed by existing Von Neumann
architectures, because for years they have been optimized to im-
prove the execution time of sequential applications. Also, graphics
processing units are optimized for linear memory access pattern,
while in Ray Tracing the access pattern is in general random. For
those reasons, the latest architecture generation of GPUs from NVi-
dia, known as Fermi architecture [20], have been improved to over-
come such limitations, including cache hierarchy and recursion in
hardware. Still, thread divergence contributes to worsen the per-
formance of parallel applications in GPGPUs [29].

Thus, there are consistent approaches to accelerate ray tracing
with custom parallel architectures in hardware, as in [26,17,35],
operating at low frequencies, such as 50 MHz and 90 MHz. Hence,
the low frequency of operation is compensated by the parallelism
of the custom design and several limitations can be overcome by a
custom design. In fact, custom parallel architecture designs have
also emerged as a promising alternative to achieve acceleration
for several parallel applications that are mapped to hardware
through Hardware Description Languages (HDLs) and Synthesis
Tools [7]. In general, the target device is a Field Programmable Gate
Array (FPGA), which can be used to prototype the design, and later
an Application Specific Integrated Circuit (ASIC) can be produced,
operating at much higher frequencies.

In this paper we propose and discuss implementation of our
parallel custom macro-architecture for ray tracing, known as Grid-
RT [16], in a GPGPU and compare its performance results against
the ASIP-based GridRT hardware implementation in FPGA. The re-
sults show that despite the lower performance of the custom ASIP

architecture in FPGA, mainly due to 25 times lower clock fre-
quency, the acceleration is significant and grows almost linearly
with the number of ASIPs. These results also show that if the
ASIP-based architecture would be implemented in an ASIC technol-
ogy (instead of FPGA), comparable to the GPGPU implementation
technology, then the performance of both implementations would
be comparable. Also, we further extend the experimental results of
the GPGPU-based implementation, because the ASIP-based imple-
mentation is limited to the area and timing constraints of the
FPGA. Therefore, in GPGPU, we were able to execute hundreds of
blocks of threads with more complex 3-D scenes and higher image
resolution (more primary rays). Furthermore, we included a second
GPU working in parallel with the first GPU. In such configuration,
the rays are distributed among both GPUs, achieving even higher
acceleration rates.

The remainder of this paper is organized as following: Section 2
briefly introduces the ray-tracing algorithm. Then, Section 3 ex-
plains the GridRT parallel architecture. After that, Sections 4 and
5 describe how the GridRT architecture is mapped to a hardware
FPGA implementation and a GPGPU CUDA implementation, respec-
tively. Finally, Section 6 presents some performance results for
both implementations and compare them, while Section 7 draws
the conclusion of this work.

2. Ray-tracing

The Whitted-style ray tracing algorithm [34] is briefly pre-
sented in Algorithms 1-3, each one describing a different stage of
the Ray tracing computation. Further details can be found in [28,1].

In Algorithm 1, primary rays are created according to the Virtual
Camera specifications, such as the viewplane width and height, as
well as the camera position and view direction. Each primary ray
corresponds to a pixel of the viewplane, where in the end of the
computation the image will have been captured. Once the virtual
camera has been setup pointing towards the 3-D scene, intersec-
tion checks are performed against each ray at a time, as in Algo-
rithm 2. Notice that more than one intersection can be found for
a single ray and, thus, the intersection that is closest to the ray ori-
gin must be selected. Otherwise, objects that are further from the
observer’s eye can mistakenly appear in front of the correct ones
in the final image.

Algorithm 1. Ray tracing primary rays.

Require: scene, ray, depth
Ensure: pixel color

1: viewplane « setupViewplane(width, height)

2: camera < setupCamera(viewplane)

3: rays < generateRays(camera)

4: depth — 0

5: for i=1 to viewplane's width do

6: forj=1 to viewplane’s height do

7: imageli][j] < trace(scene, rays[i][j], depth) {trace
function-call}

8: end for

9: end for

If an intersection is determined for a given ray, a corresponding
secondary ray may be generated heading towards a new direction,
according to Algorithm 3. Such secondary ray is going to be created
depending on the properties of the intersected object’s surface,
whether it is specular or transparent. Intersection and shading
computations are an essential part of the algorithm [27,23].



Download English Version:

https://daneshyari.com/en/article/462679

Download Persian Version:

https://daneshyari.com/article/462679

Daneshyari.com


https://daneshyari.com/en/article/462679
https://daneshyari.com/article/462679
https://daneshyari.com

