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1. Introduction

Classical Morgan-Voyce polynomials are the well-known polynomials. There are many classes of polynomials which are
related to the Morgan-Voyce polynomials. In this note we are motivated by some recent papers in this topic, such as
[1,4,7,8].

First, we define convolutions BY), (x),C%), (x),bl). (x) and cf),(x). Then, we prove some properties of new polynomials.
Finally, we define and we consider the convolution polynomials for the generalized Chebyshev polynomials Q,(x) and
Vim(X).

Throughout this paper we use N to denote the set of all nonnegative integers.

The generalized Morgan-Voyce polynomials are given by corresponding generating functions (see [1, 4]:)

gsnm(x)t”* —(1=QR+0t+t") ", (Bom(x) = 0), (1.1)
S Conlt)f" = (2= @+ 0" )1~ 20t + 1) 12)
i::bn—m(x)f"’l =(1=1+x" )1 = Q2+x)r+t™)7, (1.3)
gcnm(x)t” = (-1+@B+x)t" ) (1 - 2+x)t+t") " (1.4)

where m is a positive integer.
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The main purpose of this paper is to introduce and to investigate the polynomials B,(ffﬂ (), Cff)m (), bfffﬂ (x) and ), (x), where
seN.
Basic properties of these polynomials are developed in [1, 4, 5, 8, 9].

2. Convolution for B, ()

S

The sth convolution polynomials B;}n (x) of the polynomials B, (x) are defined as

o0

D B0 = (1 - 2+x)t+m) Y, 2.1)

n=1

where BY) (x) = Bym(X).
Notice that the polynomials B, (x) are the special case of the Humbert polynomials P,(m, x,y, p, C), i.e., the next relation
holds ([11], see also [6])

Bym(X) =Pp_q(m, (x+2)/m,1,—(s+1),1).
Namely, Humbert polynomials are given as
(C — mxt +ytm)p = an(max?y7p7 C)tn7
n=0
where m is positive integer and the other parameters are unrestricted in general.
Next, from (2.1), using the known method, we find that the next relation
(DM (1) 5+ 1)1 m_1ye

ZO Mn—T—miy 29" @2)

is an explicit formula of the polynomials BY) (x).

Remark 1. Using the known relations (see [4]), the explicit formula (2.2) can be written in the following form, for
n:=n+1:
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where
ai,ay,...,0am;Z o~ (01),(@2)y - (Am),, 2"
mFm-1 = Z Tl
b17b27~~-7bm—1§ 45 (b1),(b2)y -+ (bm-1), n!

is the generalized hypergeometric function ([11,12]).

Example 1. For s=0,1,2 and m =3, we get some initial members of B{;(x) and some initial members of numbers

BY’)(1) = BY. These sequences are given by Table 1 and Table 2, respectively.
Now, differentiating (2.1), with respect to t, we get:

in—ans X2 = —(s+ 1)(1 = 2 +X)t+ ™) (2 4 x) + mt™ ).

n=

Hence, we find that the following recurrence relation holds
(n— 1B, (X) = (s+1)(2 + 2B, 1, (%) — m(s + 1B (x). (23)
Next, we are going to prove the following theorem.

Theorem 1. Foralln > m (n,s € N), m > 1, it holds

B (%) = By (X) — (2 + X)B (%) + By (x). (2.4)

nm nm n-1,m n-m,m
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